Strategies to Replace Antibiotics for Animal Productivity

Louis Russell
President & CEO
APC, Inc. • Ankeny, Iowa
Why Remove Antibiotics

• Increase in the incidence of antibiotic resistant bacteria threatens our health
 – Use of antibiotics in livestock feed
 – Use of antibiotics in consumer products
 – Use of antibiotics in human medicine

• Consumer demand
 – A segment of consumers are demanding food from animals that are not fed antibiotics.
Role of Antibiotics in Animal Production

• Antibiotics
 – Treat an existing infection
 – Prevent a potential infection
Stressors:

- Weaning
- Dietary Transition
- Co-mingling
- Pathogen Exposure
- Social

The immune response begins at local tissue sites with recruitment of inflammatory cells.

Neutrophils and Macrophages

These stimulated cells produce pro-inflammatory cytokines, affecting multiple tissue cells including the brain, the HPA axis, the liver, adipose tissue, muscle and bone.

IL-1
IL-6
TNF-α

Hypothalamic-Pituitary-Adrenal Axis

- ↓Feed Intake
- ↑ACTH
- Adrenals
- ↑Glucocorticoids
- ↑BMR
- ↑Fever

Stimulation of the Acute Phase Protein Response

- ↑AA uptake
- ↑haptoglobin
- ↑C-reactive protein
- ↑glucose
- ↑serum amyloid A
- ↑α - acid glycoprotein

Adipose Tissue

- ↑lipolysis
- ↑adipocytokines
- ↓LPL

Skeletal Muscle

- AA release
- Protein Synthesis
- ↑AA uptake

Bone

- ↑WBC
- ↑Bone resorption
Role of Antibiotics in Animal Production

- **Antibiotics**
 - Treat an existing infection
 - Prevent a potential infection

- **Energy that would be diverted to the immune system is available for productive functions.**
 - Increased growth rate
 - Improved feed efficiency
Alternatives to Antibiotics

• Change husbandry practices to prevent exposure to pathogens.

• Strategic use of vaccinations to improve the animals resistance to infection.

• Non antibiotic feed additives
 – Enzymes
 – Pro- and Pre-biotics
 – Micronutrients, ie, Zn, Cu
 – Functional ingredients:
 • oligo saccharides
 • MCFA / VFA
 • Functional Proteins
Considerations

• Ease of implementation
• Consistency of response
• Cost
Functional Protein: Spray Dried Animal Plasma (SDAP)

- SDAP is produced by separating the cellular fraction from whole blood and subsequent spray drying, retaining functionality of the proteins present in plasma.

- In 2008, the ASAS identified Spray-Dried Plasma as one of the 10 most important discoveries in Swine Nutrition in the past 100 years.
Percentage improvement in performance of pigs fed plasma protein compared to other protein sources (D 0-14 after weaning)

<table>
<thead>
<tr>
<th>Reference</th>
<th>n(^1)</th>
<th>ADG</th>
<th>ADFI</th>
<th>FCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffey and Cromwell, 2001 (Plasma vs other proteins)</td>
<td>79</td>
<td>+25.0</td>
<td>+21.0</td>
<td>+4.0</td>
</tr>
<tr>
<td>Van Dijk, 2001 (Plasma vs Milk protein sources)</td>
<td>38</td>
<td>+23.9</td>
<td>+24.5</td>
<td>+0.1</td>
</tr>
<tr>
<td>Van Dijk, 2001 (Plasma vs Soy protein sources)</td>
<td>14</td>
<td>+38.1</td>
<td>+28.8</td>
<td>+7.9</td>
</tr>
</tbody>
</table>

\(^1\) Number of experiments

Decreased Scour Score
Three Experiment Summary in Pigs

Gatnau and Zimmerman, 1993. Unpublished Data
FPs During Disease Challenge

- **Studies in multiple species**
- **Studies with both enteric and respiratory challenges**
- **Adding FP improves:**
 - Fecal score (less diarrhea)
 - Average daily gain
 - Survival
 - Feed efficiency

<table>
<thead>
<tr>
<th>Species</th>
<th>Pathogen</th>
<th>Results</th>
<th>Author</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigs</td>
<td>E. coli</td>
<td>↓ fecal score</td>
<td>Borg et al.</td>
<td>1999</td>
</tr>
<tr>
<td>Pigs</td>
<td>Salmonella</td>
<td>↓ fecal score</td>
<td>Borg et al.</td>
<td>1999</td>
</tr>
<tr>
<td>Pigs</td>
<td>E. coli</td>
<td>↑ ADG, ↓ mortality</td>
<td>Bosi et al.</td>
<td>2001</td>
</tr>
<tr>
<td>Pigs</td>
<td>E. coli</td>
<td>↑ ADG, ↓ IgA</td>
<td>Bosi et al.</td>
<td>2004</td>
</tr>
<tr>
<td>Pigs</td>
<td>E. coli</td>
<td>↑ ADG, ↑ Lactobacilli</td>
<td>Torrallardona et al.</td>
<td>2003</td>
</tr>
<tr>
<td>Pigs</td>
<td>E. coli</td>
<td>↑ ADG</td>
<td>Campbell et al.</td>
<td>2001</td>
</tr>
<tr>
<td>Pigs</td>
<td>E. coli</td>
<td>↓ shedding</td>
<td>Deprez et al.</td>
<td>1996</td>
</tr>
<tr>
<td>Pigs</td>
<td>Rotavirus</td>
<td>↓ diarrhea</td>
<td>Crl et al.</td>
<td>2007</td>
</tr>
<tr>
<td>Pigs</td>
<td>E. coli</td>
<td>↓ fecal score</td>
<td>Nollet et al.</td>
<td>1999</td>
</tr>
<tr>
<td>Pigs</td>
<td>LPS</td>
<td>↓ cytokine mRNA expression</td>
<td>Touchette et al.</td>
<td>2002</td>
</tr>
<tr>
<td>Pigs</td>
<td>E. coli</td>
<td>↑ ADG, ↓ fecal score</td>
<td>Van Dijk et al.</td>
<td>2002</td>
</tr>
<tr>
<td>Pigs</td>
<td>Gastric ulcers</td>
<td>↓ clinical symptoms, ↑ ADG</td>
<td>Crenshaw et al.</td>
<td>2003</td>
</tr>
<tr>
<td>Pigs</td>
<td>PRRS</td>
<td>↑ feed efficiency</td>
<td>Escobar et al.</td>
<td>2006</td>
</tr>
<tr>
<td>Pigs</td>
<td>PCVAD</td>
<td>↑ survival</td>
<td>Messier et al.</td>
<td>2007</td>
</tr>
<tr>
<td>Pigs</td>
<td>PCVAD</td>
<td>↑ ADG, ↓ clinical symptoms</td>
<td>Morés et al.</td>
<td>2007</td>
</tr>
<tr>
<td>Calves</td>
<td>Coronavirus</td>
<td>↑ recovery</td>
<td>Arthington et al.</td>
<td>2002</td>
</tr>
<tr>
<td>Calves</td>
<td>Crypto. parvum</td>
<td>↓ scours, ↓ shedding</td>
<td>Hunt et al.</td>
<td>2002</td>
</tr>
<tr>
<td>Calves</td>
<td>E. coli</td>
<td>↑ survival, ↑ ADG, ↓ scours</td>
<td>Nollet et al.</td>
<td>1999</td>
</tr>
<tr>
<td>Calves</td>
<td>E. coli</td>
<td>↑ survival, ↑ ADG, ↓ scours</td>
<td>Quigley & Drew</td>
<td>2000</td>
</tr>
<tr>
<td>Shrimp</td>
<td>WSSV</td>
<td>↑ survival, ↑ ADG</td>
<td>Russell & Campbell</td>
<td>2000</td>
</tr>
<tr>
<td>Trout</td>
<td>Yersinia ruckeri</td>
<td>↑ survival, ↑ ADG</td>
<td>Aljaro et al.</td>
<td>1998</td>
</tr>
<tr>
<td>Poultts</td>
<td>Pasteurella multocida</td>
<td>↑ survival, ↑ ADG</td>
<td>Campbell et al.</td>
<td>2004</td>
</tr>
<tr>
<td>Broilers</td>
<td>Necrotic Enteritis</td>
<td>↑ survival, ↑ feed efficiency, ↑ ADG</td>
<td>Campbell et al.</td>
<td>2006</td>
</tr>
</tbody>
</table>
SDAP is an Alternative to Antibiotics

Effect of feed medication on the performance response of piglets to SDP in the two weeks after weaning

<table>
<thead>
<tr>
<th>Medication</th>
<th>0-14 days Post-Weaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>YES</td>
<td>110</td>
</tr>
<tr>
<td>NO</td>
<td>33</td>
</tr>
</tbody>
</table>

Pigs perform well in the absence of antibiotics when they are fed plasma.

- Higher average daily gain
- Higher average daily feed intake
- Improved feed efficiency

N: Number of trials.
p<0.05. Statistical significance of improvement over control without plasma

Plasma vs ATB during *Salmonella* Challenge

1. Positive Control – no supplement
2. Antibiotics - 0.05% Salinomycin and 0.033% Zinc bacitracin
3. Low SDPP -10 g/kg diet
4. High SDPP - 20 g/kg diet
5. Negative Control - no supplement, not challenged.

Challenge

- On 8, 10 and 12d, birds were inoculated with 2 mL of bacterial suspension (5.9 x 10⁸ CFU/ml)
- Unchallenged birds received 2 ml of LB broth

Beski et al., 2015. J. Animal Physiology and animal nutrition.
Functional proteins allow energy and nutrients for growth and other productive functions.
• In livestock production antibiotics are effective in the treatment and prevention of infections.
 – Improves production efficiency

• Options and Considerations
 – Effectiveness
 – Ease of adaption
 – Cost