Strategies to Replace Antibiotics for Animal Productivity

Louis Russell

President & CEO APC, Inc. • Ankeny, Iowa

Why Remove Antibiotics

- Increase in the incidence of antibiotic resistant bacteria threatens our health
 - Use of antibiotics in livestock feed
 - Use of antibiotics in consumer products
 - Use of antibiotics in human medicine
- Consumer demand
 - A segment of consumers are demanding food from animals that are not fed antibiotics.

Role of Antibiotics in Animal Production

- Antibiotics
 - Treat an existing infection
 - Prevent a potential infection

The immune response begins These stimulated cells produce **Stressors:** at local tissue sites with pro-inflammatory cytokines, recruitment of inflammatory cells. affecting multiple tissue cells Weaning • including the brain, the HPA axis, the liver, adipose tissue, **Dietary Transition** • muscle and bone. Neutrophils and **Co-mingling** • Macrophages Pathogen Exposure • P IL-1 Social 11-6 TNF-a Hypothalmic-Pituitary-**Stimulation of the Acute Phase Adrenal Axis Protein Response** ↓Feed Intake AA uptake BMR triglycerides 4 haptoglobin C-reactive protein ↑AC1 ↑Fever ceruloplasmin glucose fibrinogen Adrenals serum amyloid A a - acid glycoprotein ↑Glucocorticoids **Adipose Tissue Skeletal Muscle** Bone AA uptake **↑lipolysis** ↑Bone resorption **↑WBC** AA release †adipocytokines Protein **Synthesis**

Role of Antibiotics in Animal Production

- Antibiotics
 - Treat an existing infection
 - Prevent a potential infection
- Energy that would be diverted to the immune system is available for productive functions.
 - Increased growth rate
 - Improved feed efficiency

Alternatives to Antibiotics

- Change husbandry practices to prevent exposure to pathogens.
- Strategic use of vaccinations to improve the animals resistance to infection.
- Non antibiotic feed additives
 - Enzymes
 - Pro- and Pre-biotics
 - Micronutrients, ie, Zn, Cu
 - Functional ingredients:
 - oligo saccharides
 - MCFA / VFA
 - Functional Proteins

Considerations

- Ease of implementation
- Consistency of response
- Cost

Functional Protein: Spray Dried Animal Plasma (SDAP)

- SDAP is produced by separating the cellular fraction from whole blood and subsequent spray drying, retaining functionality of the proteins present in plasma.
- In 2008, the ASAS identified Spray-Dried Plasma as one of the 10 most important discoveries in Swine Nutrition in the past 100 years

Percentage improvement in performance of pigs fed plasma protein compared to other protein sources

(D 0-14 after weaning)

Reference	n¹	ADG	ADFI	FCR
Coffey and Cromwell, 2001 (Plasma vs other proteins)	79	+25.0	+21.0	+4.0
Van Dijk, 2001 (Plasma vs Milk protein sources)	38	+23.9	+24.5	+0.1
Van Dijk, 2001 (Plasma vs Soy protein sources)	14	+38.1	+28.8	+7.9

¹ Number of experiments

Coffey and Cromwell, 2001. Pig News and Information 22(2):39N-48N. Van Dijk, 2001. Livestock Production Science 68:263-274.

Decreased Scour Score Three Experiment Summary in Pigs

Gatnau and Zimmerman, 1993. Unpublished Data

FPs During Disease Challenge

- Studies in multiple species
- Studies with both enteric and respiratory challenges
- Adding FP improves:
 - Fecal score (less diarrhea)
 - Average daily gain
 - Survival
 - Feed efficiency

Species	Pathogen	Results	Author	
Pigs	E. coli	\downarrow fecal score	Borg et al.	1999
Pigs	Salmonella	\downarrow fecal score	Borg et al.	1999
Pigs	E. coli	↑ ADG, \downarrow mortality	Bosi et al.	2001
Pigs	E. coli	↑ ADG, $↓$ IgA	Bosi et al.	2004
Pigs	E. coli	↑ ADG, ↑ Lactobacilli	Torrallardona et al.	2003
Pigs	E. coli	↑ ADG	Campbell et al.	2001
Pigs	E. coli	\downarrow shedding	Deprez et al.	1996
Pigs	Rotavirus	↓ diarrhea	Corl et al.	2007
Pigs	E. coli	\downarrow fecal score	Nollet et al.	1999
Pigs	LPS	\downarrow cytokine mRNA expression	Touchette et al.	2002
Pigs	E. coli	↑ ADG, \downarrow fecal score	Van Dijk et al.	2002
Pigs	Gastric ulcers	\downarrow clinical symptoms, \uparrow ADG	Crenshaw et al.	2003
Pigs	PRRS	\uparrow feed efficiency	Escobar et al.	2006
Pigs	PCVAD	↑ survival	Messier et al.	2007
Pigs	PCVAD	\uparrow ADG, \downarrow clinical symptoms	Morés et al.	2007
Calves	Coronavirus	↑ recovery	Arthington et al.	2002
Calves	Crypto. parvum	\downarrow scours, \downarrow shedding	Hunt et al.	2002
Calves	E. coli	\uparrow survival, \uparrow ADG, \downarrow scours	Nollet et al.	1999
Calves	E. coli	\uparrow survival, \uparrow ADG, \downarrow scours	Quigley & Drew	2000
Shrimp	WSSV	↑ survival, ↑ ADG	Russell & Campbell	2000
Trout	Yersinia ruckeri	\uparrow survival, \uparrow ADG	Aljaro et al.	1998
Poults	Pasteurella multocida	↑ survival, ↑ ADG	Campbell et al.	2004
Broilers	Necrotic Enteritis	\uparrow survival, \uparrow feed efficiency, \uparrow ADG	Campbell et al.	2006

SDAP is an Alternative to Antibiotics

Effect of feed medication on the performance response of piglets to SDP in the two weeks after weaning

Medication	0-14 days Post-Weaning				
	n	ΔADG (g/d)	ΔADFI (g/d)	ΔFGR (g/g)	
YES	110	+36*	+43*	-0.02	
NO	33	+41*	+32*	-0.34*	

Pigs perform well in the absence of antibiotics when they are fed plasma.

- Higher average daily gain
- Higher average daily feed intake
- Improved feed efficiency

N: Number of trials.

* p<0.05. Statistical significance of improvement over control without plasma

Torrallardona, 2010, Asian-Australian J. Anim. Sci. 23:131-148

Plasma vs ATB during Salmonella Challenge

- 1. Positive Control no supplement
- 2. Antibiotics 0.05 % Salinomycin and 0.033% Zinc bacitracin
- 3. Low SDPP -10 g/kg diet
- 4. High SDPP 20 g/kg diet
- 5. Negative Control no supplement, not challenged.

Challenge

- On 8,10 and 12d, birds were inoculated with 2 mL of bacterial
- suspension (5.9 x 108 CFU/ml)
- Unchallenged birds received 2 ml of LB broth

Beski et al., 2015. J. Animal Physiology and animal nutrition.

Functional proteins allow energy and nutrients for growth and other productive functions

- In livestock production antibiotics are effective in the treatment and prevention of infections.
 - Improves production efficiency
- Options and Considerations
 - Effectiveness
 - Ease of adaption
 - Cost