Economic Analysis of Using Cornell Decision Support System for Tomato Production Yangxuan Liu¹, Michael Langemeier¹,

Ian Small², Laura Joseph², William Fry²

¹Purdue University

²Cornell University

Introduction

 World's second largest producer of tomatoes: US

- Late blight infection is a persistent problem
 - Contagious
 - Easily dispersed

Late blight symptoms on tomato, Image from usablight.org

Introduction

- Fungicide application can be used to manage late blight
 - Fungicide spray on a regular calendar basis (7-Day)
 - Cornell Potato/Tomato Late Blight Decision
 Support System (DSS)
- Objective
 - Examine the economic impact of using DSS to mitigate the impact of late blight

Data

Computer Simulated Data:

- By Ian Small and Laura Joseph from Fry Lab at Cornell University
- DSS and 7-day spray schedule in 12 locations (NC) from 2000 to 2013
 - No. of applications
 - <u>Disease severity</u>
- 3 levels of cultivar resistance (Susceptible, Moderately Susceptible, Moderately Resistant)

Data

Net Income over Fungicide Cost/Acre

 Net income over fungicide cost = Tomato price * average tomato yield – (Fungicide cost + application cost) * number of application

Budget Data

- Annual tomato prices and average tomato yields from 2000-2009
 - USDA Tomato Statistics for fresh tomatoes
- Bravo WeatherStik fungicide price (\$8.63/acre/application)
 - By Dr. M. T. McGrath in April 2013
- Ground fungicide application cost (\$6.58/acre/application)
 - Lazarus (2013)
- USDA Prices Paid Indices

Summary of Statistics

	Susceptible Cultivar		N = 112	/Acre
Data Source	Variable	Schedule	Mean	Std Dev
Ian Small and Laura Joseph (Fry Lab)	No. of Applications*	7-day	11.00	0.00
		DSS	12.6	2.6
	Disease Severity: RAUDPC***	7-day	0.1023	0.1210
		DSS	0.0048	0.0165
	Cost of Fungicide Applications*	7-day	\$ 124.02	13.25
Yangxuan Liu		DSS	\$ 141.56	29.30
(AgEcon Purdue)	Net Income over fungicide cost	7-day	\$ 9,230.62	658.81
		DSS	\$ 9,213.08	656.82

*, **, *** Mean difference is statistically significant at 1%, 5%, and 10% significant level.

Methods

- Stochastic efficiency with respect to a function
 - Hardaker et al. 2004
 - Use certainty equivalents (CE) to rank risky alternatives
 - Identify the utility weighted risk premium (RP)

Methods

• Risk premium (RP) or the value of information

$$-RP_{DSS,Calendar,R_{a}} = CE_{DSS,R_{a(w)}} - CE_{Calendar,R_{a(w)}}$$

• Relative Risk Aversion Levels (0, 1, 3, 5)

- SIMETAR: Simulation and Econometrics to Analyze Risk
 - Richardson, Schumann and Feldman 2006

SERF: Average of Certainty Equivalent

		Spr	Spray Schedule			Risk Premium		
Risk Aversion	7-Day			DSS	DS	S over 7-Da	ау	
r=0	\$	9,251.42	\$	9,233.73		\$ (17.69)		
r=1	\$	9,227.88	\$	9,210.34		\$ (17.54)		
r=3	\$	9,183.29	\$	9,166.06		\$ (17.23)		
r=5	\$	9,142.28	\$	9,125.39		\$ (16.89)		
					Suscept	ible Cultiva	ars /Acre	

Note: r is the relative risk aversion coefficient. A power utility function is assumed.

Conclusion

- The value of DSS ranged from -\$17.69 to \$48.33 per acre.
 - The calendar spray schedule was preferred for the susceptible cultivars.
 - DSS was preferred for moderately susceptible cultivars and moderately resistant cultivars.

Further study

Incorporate the relationship between disease severity and tomato yields

Questions, Comments

Center for Commercial Agriculture

Appendix: DSS Components

Location-specific weather data

Late blight disease simulator

Report Name: 3 Report Date: 11/22/2010 Simulation: 7/21 Cultivar: ALL BLUE; Resistance: susceptible; Maturity: late. Weather source: Arkport lat. 42.42 kon. – 77.70 elev. 1200 Forecast source: arkportma lat. 42.40 kon. – 77.70 elev. 1197

Disease forecasting tools

Simcast Summary								
Date	7/31	8/1	8/2	8/3	8/4	8/5	8/6	8/7
Blight Units	13	18	25	32	39	44	51	57
Fungicide Units	-2	-6	-10	-14	-15	-16	-17	-18
Key								
	Below Threshold							
>=30	Blight Unit Threshold Exceeded and 5 Days Since Last Fungicide							
<=-15	5 Fungicide Unit Threshold Exceeded and 5 Days Since Last Fungicide							

Alert system

(Slide provided by Ian Small)

Center for Commercial Agriculture

Appendix: Methodology

• SERF

$$EU(w, r(w)) = \int U(w, r(w)) dF(w) = \sum_{i=1}^{m} U(w_i, r(w)) P(w_i), r_1(w) \le r(w) \le r_2(w)$$

Power utility used for stochastic efficiency with respect to a function

$$U(x) = \frac{x^{1-r}}{1-r} \text{ for } r \neq 1; U(x) = \ln(x) \text{ for } r = 1$$

- $CE(w, r(w)) = U^{-1}(w, r(w))$
- Utility weighted risk premium (RP) $RP_{DSS,Calendar,R_a} = CE_{DSS,R_{a(w)}} - CE_{dalendar,R_{a(w)}}$

Summary of Statistics

	Moderately Susceptible Cultivars		N = 112	/Acre
Data Source	Variable	Schedule	Mean	Std Dev
	No. of Applications*	7-day	11.00	0.00
ian Small and		DSS	8.8	1.9
(Fry Lab)	Disease Severity: RAUDPC	7-day	0.00734	0.0445
		DSS	0.00340	0.0160
	Cost of Fungicide Applications*	7-day	\$ 124.02	13.25
Yangxuan Liu		DSS	\$ 98.72	21.5
(AgEcon Purdue)	Net Income over fungicide cost	7-day	\$ 9,230.62	658.81
		DSS	\$ 9,255.92	658.8

*, **, *** Mean difference is statistically significant at 1%, 5%, and 10% significant level.

Summary of Statistics

	Moderately Resistant Cultivars		N = 112	/Acre
Data Source	Variable	Schedule	Mean	Std Dev
Ian Small and Laura Joseph (Fry Lab)	No. of Applications*	7-day	11.00	0.00
		DSS	6.8	1.4
	Disease Severity: RAUDPC	7-day	0.000654	0.00491
		DSS	0.000216	0.00071
	Cost of Fungicide Applications*	7-day	\$ 124.02	13.25
Yangxuan Liu		DSS	\$ 76.00	16.4
(AgEcon Purdue)	Net Income over fungicide cost	7-day	\$ 9,230.62	658.81
		DSS	\$ 9,278.64	660.74

*, **, *** Mean difference is statistically significant at 1%, 5%, and 10% significant level.

SERF: Average of Certainty Equivalent

		Spr	ay Schedu	Ri	isk Premiu	m	
Risk Aversion	7-Day			DSS	DS	DSS over 7-Day	
r=0	\$	9,251.42	\$	9,276.88		Ş 25.46	
r=1	\$	9,227.88	\$	9,253.42		\$ 25.54	
r=3	\$	9,183.29	\$	9,209.02		\$ 25.73	
r=5	\$	9,142.28	\$	9,168.23		\$ 25.95	
Moderately Susceptible Cultivars/Acre							

Note: r is the relative risk aversion coefficient. A power utility function is assumed.

SERF: Average of Certainty Equivalent

	Spray Schedule				Ri	isk Premiu	m
Risk Aversion	7-Day			DSS	DS	DSS over 7-Day	
r=0	\$	9,251.42	\$	9,299.51		\$ 48.09	
r=1	\$	9,227.88	\$	9,276.00		\$ 48.12	
r=3	\$	9,183.29	\$	9,231.50		\$ 48.21	
r=5	\$	9,142.28	\$	9,190.61		\$ 48.33	
Moderately Resistant Cultivars/Acre							

Note: r is the relative risk aversion coefficient. A power utility function is assumed.

