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Economic Analysis of Using Cornell Decision Support System for Tomato Production 

 

Abstract 

 

Stochastic efficiency with respect to a function is used to compare late blight 

management strategies between a calendar spray schedule and a spray schedule forecasted using 

the Potato/Tomato Late Blight Decision Support System (DSS).  Results show that in terms of 

disease control, the DSS recommended spray schedule is more effective.  Average net income 

over fungicide cost and average risk-adjusted net income for the DSS recommended spray 

schedule is lower for susceptible cultivars and higher for moderately susceptible cultivars and 

moderately resistant cultivars.  The value added by DSS ranges from -$17.69 to $48.33 per acre.  

Our research contributes to the literature by providing a method to evaluate the economic benefit 

of adopting DSS.  

Key Words: Stochastic efficiency with respect to a function, precision farming, disease 

management 
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Introduction 

The United States is the world's second leading producer of tomatoes, after China.  

Annually, U.S. fresh and processed tomatoes contribute more than $2 billion to cash farm 

income. California and Florida represent almost two thirds of total U.S. fresh tomato acreage.  

Ohio, Virginia, Georgia, Tennessee, North Carolina, New Jersey, and Michigan are also major 

tomato production states.  Late blight infection is a persistent problem faced by tomato growers.  

It is highly contagious, and can be easily dispersed (Wale, Platt, and Nigel 2008).  Every year, a 

tremendous amount of fungicide is applied to control late blight.  Reducing the amount of 

fungicides applied to control late blight has both environmental and economic benefits.  The 

emergence of precision farming technology can increase farming efficiency and reduce the 

environmental impact of input usage.  However, the decision to adopt precision farming depends 

on the cost and return of the precision farming technology.  In this study, a new potential 

application of precision agriculture to tomato plant disease control for late blight are examined.  

The precision agriculture technology examined in this study is called the Potato/Tomato 

Late Blight Decision Support System (DSS).  It uses precision farming technology to 

recommend precise and timely use of fungicide in accordance with weather conditions and 

pathogen inoculum.  This system could potentially increase farm net returns and reduce risks 

(Fohner, Fry, and White 1984).  The traditional management of late blight depends highly on 

preventative weekly fungicide application during the planting season (Song et al. 2003).  

However, late blight epidemics and thus the need for fungicide depends heavily on weather and 

the source of pathogen inoculum (Fohner, Fry, and White 1984).  Consequently, a calendar based 

schedule may not be the most efficient or cost-effective method of applying fungicide to control 

late blight.   
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The efficacy of DSS in disease surpression and fungicide reduction has been an important 

topic of previous biology and pathology research (Fry, Apple, and Bruhn 1983; Fohner, Fry, and 

White 1984).  Economic research in the area of late blight management is limited (Guenthner, 

Michael, and Nolte 2001; Johnson et al. 1997).  Risk analyses in agriculture have been adopted 

to a wide range of individual decision making processes taking grower’s behavior in face of 

income uncertainties into consideration (Parcell and Langemeier 1997; Harris and Mapp 1986; 

Llata et al. 1999; Ritchie et al. 2004; Zacharias and Grube 1984; Musser, Tew, and Epperson 

1981; Cochran, Robison, and Lodwick 1985; Greene et al. 1985; Williams et al. 2014). However, 

risk analysis has not yet been applied in the area of late blight precision farming adoption.   

The intent of this paper is to contribute to the understanding of the economic incentives 

facing a grower choosing to adopt or not to adopt DSS through the analysis of net income over 

fungicide cost.  This paper will examine the economic impact of using DSS to mitigate the 

impact of late blight.  Specifically, the overall objective of this paper is to compare the economic 

benefits of scheduling fungicide applications with DSS with a 7-day spray schedule by taking 

into account the risk attitudes of tomato growers.   

Our analyses require the integration of different models covering DSS, pathology models, 

and economic components.  DSS is used to develop a weather-based spray schedule.  The 

LATEBLIGHT model (Andrade-Piedra et al. 2005), a pathology model, is used to simulate 

disease severity under different weather scenarios.  Net income over fungicide cost distributions 

are developed for alternative fungicide application schedules from 2000 to 2009 in 12 locations 

in North Carolina.  Three tomato cultivar resistance levels for late blight (susceptible, moderately 

susceptible and moderately resistant) are examined in this study.  Stochastic efficiency with 
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respect to a function (Hardaker et al. 2004; Hardaker and Lien 2010; Meyer, Richardson, and 

Schumann 2009) is used to identify the risk adjusted value of DSS.  

Methods 

Late blight creates a highly uncertain decision making environment.  Recognizing this, 

this paper incorporates uncertainty and producers’ risk attitudes into the decision making 

framework.  Alternative decisions can be ranked with risk attitudes of each individual 

(Schumann 2011).  In this paper, mutually exclusive alternative fungicide spray decisions faced 

by tomato growers (i.e., a calendar spray schedule and the DSS recommended spray schedule) 

are compared.  Weather conditions in different years creates a distribution of net income.  

Computer simulation programs using historical weather data can generate an empirical 

probability distribution function for net income between alternative spray schedules.  The 

probability distribution functions can then be ranked using stochastic efficiency procedures.  

Stochastic efficiency with respect to a function (Hardaker et al. 2004; Meyer, Richardson, and 

Schumann 2009; Hardaker and Lien 2010) are used to identify risk efficient fungicide 

application strategies and to compute the certainty equivalent of net income for each spray 

schedule.  

Stochastic efficiency with respect to a function is first used to calculate certainty 

equivalents, which is the risk adjusted value of net income over fungicide cost.  Risky 

alternatives with higher CEs are preferred to alternatives with lower CEs (Hardaker et al. 2004; 

Meyer, Richardson, and Schumann 2009; Hardaker and Lien 2010).  Stochastic efficiency with 

respect to a function is also used to identify the utility weighted risk premium (RP) or the value 
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of information provided by DSS.  The power utility function1 was used to calculate the certainty 

equivalents.  Relative risk aversion levels used for stochastic efficiency with respect to a function 

include 0, 1, 3, and 5.  

Given a risk aversion level, the utility weighted risk premium (RP) can be calculated for 

the DSS spray schedule and the 7-day spray schedule using the following equation:  

 𝑅𝑃𝐷𝑆𝑆,𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟,𝑅𝑎
= 𝐶𝐸𝐷𝑆𝑆,𝑅𝑎(𝑤)

− 𝐶𝐸𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟,𝑅𝑎(𝑤)
 (1) 

where RP reflects the minimum amount of money ($/acre) that a decision maker is willing to pay 

for the new technology (Hardaker et al. 2004), which could also be viewed as the value of the 

information provided by DSS for tomato growers.  When RP is positive, the DSS spray schedule 

is preferred to the 7-day spray schedule.   

Data 

Data generating process requires the use of DSS (Forbes et al. 2008), the LATEBLIGHT 

pathology model (Andrade-Piedra et al. 2005), and economic components.  Two computer 

programs, PythonTM and SAS ®, are used to obtain the distribution of net income over fungicide 

cost for both 7-day and DSS spray schedules.  The 7-day spray schedule is the most commonly 

adopted calendar spray schedule for fungicide application by tomato growers.  Growers are also 

assumed to be able to initiate fungicide application based on the DSS recommendation. The 

PythonTM program is used to generate data for disease severity, and the number of fungicide 

applications by Ian Small and Laura Joseph from the Fry Lab at Cornell University.  A SAS® 

program is then used to add economic components (tomato price, yield, fungicide cost) to 

construct net income over fungicide cost.  

                                                           
1 The power utility function exhibits decreasing absolute risk aversion and constant relative risk aversion.  

The functional form of power utility is as follows: 𝑈(𝑥) =
𝑥1−𝑟

1−𝑟
 𝑓𝑜𝑟 𝑟 ≠ 1; 𝑈(𝑥) = ln(𝑥) 𝑓𝑜𝑟 𝑟 = 1 .  
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Disease severity and the number of fungicide applications are generated for three 

different levels of cultivar resistance (susceptible, moderately susceptible, and moderately 

resistant) in 12 locations from 2000 to 2013 in North Carolina.  Two basic components of the 

simulation programs are DSS (Forbes et al. 2008), and the LATEBLIGHT model (Andrade-

Piedra et al. 2005).  These components are presented in detail elsewhere (Forbes et al. 2008; 

Andrade-Piedra et al. 2005) and will not be discussed in detail in this paper.   

A description of the generation of disease severity and the number of fungicide 

applications used in the DSS model is as follows.  Historical weather data (rainfall, temperature, 

and humidity) for 12 locations in North Carolina was used to forecast the incidence of late blight 

and the number of fungicide applications.  The plant growth season was assumed to be from 3/26 

to 7/27.  A fungicide rate of 1.5 pints per acre of Bravo WeatherStik was assumed for each 

application and cultivar.  DSS was used to generate DSS spray schedules for each year.  The 7-

day and DSS spray schedules were then incorporated into the LATEBLIGHT model (Andrade-

Piedra, Hijmans, Juarez, et al. 2005).  This model is used to simulate the disease epidemic for 

schedules involving each resistance category and season.  The start time for late blight was 

randomly selected after the Blitecast forecast reached the severity value of 18.   

The number of fungicide applications for each schedule were used to compute net income 

over fungicide cost for each weather scenario.  A yield function that relates tomato production to 

late blight infection is currently not available.  Because of this, yield losses are not incorporated 

into the analysis.  Net income over fungicide cost is computed as follows: 
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 𝑁𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒 𝑜𝑣𝑒𝑟 𝑓𝑢𝑛𝑔𝑖𝑐𝑖𝑑𝑒 𝑐𝑜𝑠𝑡𝑙,𝑦,𝑐,𝑖

= 𝑇𝑜𝑚𝑎𝑡𝑜  𝑝𝑟𝑖𝑐𝑒𝑙,𝑦 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑜𝑚𝑎𝑡𝑜 𝑦𝑖𝑒𝑙𝑑𝑙,𝑦

− (𝐹𝑢𝑛𝑔𝑖𝑐𝑖𝑑𝑒 𝑐𝑜𝑠𝑡 + 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡)

∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑙,𝑦,𝑐,𝑖 

(2) 

where 𝑙 stands for the each of the 12 locations; 𝑦 stands for the specific year; 𝑐 stands for each 

cultivar (susceptible, moderately susceptible, and moderately resistant); and 𝑖 refers to the 7-day 

or the DSS recommended spray schedule.  Tomato prices and average yields from 2000 to 2009 

for North Carolina were obtained from USDA Tomato Statistics for fresh tomatoes 

(http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1210).  

Average yield and price were assumed to be the same among different cultivar resistance levels.  

As indicated above, Bravo WeatherStik (chlorothalonil) was used for each fungicide application.  

Application costs are listed in  Table 1.  Data pertaining to the number of fungicide applications 

were provided by Ian Small and Laura Joseph from the Fry Lab at Cornell University.  

Analysis and Results  

The Simulation and Econometrics to Analyze Risk (SIMETAR©) model developed by 

Richardson, Schumann and Feldman (2006) is used to conduct the stochastic efficiency analysis.  

Analysis is conducted for 12 locations in North Carolina.  Three cultivar resistant levels 

(susceptible, moderately susceptible, and moderately resistant) for tomatos are examined at each 

location.  Microsoft Visual Basic for Applications (VBA) language was used to facilitate the 

computations obtained from SIMETAR.     

Table 2 shows the summary of statistics for tomato revenue, late blight disease rating, 

and fungicide applications.  For the susceptible cultivar, DSS requires a higher number of 

fungicide applications than the 7-day spray schedule, but also exhibits better disease control.  For 

http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1210
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the moderately susceptible cultivars and the moderate resistant cultivars, DSS requires less 

fungicide applications than the 7-day spray schedule, and has better disease control.  These 

results suggest that the timing of fungicide application is important in controlling late blight.  

Efficiently applying fungicide helps reduce fungicide applications and allows for more effective 

control of the disease.  The average net income over fungicide cost for DSS is smaller than that 

for the 7-day spray schedule for the susceptible cultivars, but is relatively higher for the 

moderately susceptible and moderately resistant cultivars.     

Table 3 summarizes the average certainty equivalents for the 12 locations in North 

Carolina for each cultivar.  Four different relative risk aversion levels were evaluated.  DSS 

generates a lower certainty equivalent for each risk aversion level for susceptible cultivars and a 

higher certainty equivalent for each risk aversion level for moderately susceptible cultivars and 

moderately resistant cultivars.  The risk premium ranges from -$17.69 to -$16.89 per acre for the 

susceptible cultivars, from $25.46 to $25.95 for the moderately susceptible cultivars, and from 

$48.09 to $48.33 for the moderately resistant cultivars.  

Conclusions 

This study used computer generated data from North Carolina to examine the economic 

benefits of adopting precision farming technology to tomato production.  In summary, DSS 

requires a higher number of fungicide applications for susceptible cultivars, and less fungicide 

applications for moderately susceptible cultivars and moderately resistant cultivars.  For all the 

cultivars, DSS is more effective in controlling disease than the calendar spray schedule.  For the 

susceptible cultivars, the calendar spray schedule was preferred.  Conversely, DSS was the 

preferred risk strategy for moderately susceptible cultivars and moderately resistant cultivars.  

The value of DSS ranged from -$17.69 to $48.33 per acre.  
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Our research contributes to the literature by providing a method to evaluate the economic 

benefits of adopting DSS.  Knowing the value of the information provided by DSS can help to 

promote DSS to tomato growers for adoption.  This would help improve late blight management 

actions taken by growers to control the spread of the disease and limit potential loss.  The 

improvement in productivity will help to ensure food security for the growing population.  

Further study will involve incorporating the relationship between disease severity and 

tomato yields into our analysis.  This will enable us to more accurately measure the value of the 

precision farming technology.   
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 Table 1. Fungicide application cost in 2013. 

Name Quantity Fungicide Cost Application Cost Total fungicide 

application cost 

     

Bravo  

WeatherStik 

1.5  

pints 

$8.63  

/acre/application 

$6.58 

/acre/application 

$15.21 

acre/application 

     

*Fungicide price is obtained from local agricultural chemical distributor on Long Island by Dr. 

M. T. McGrath in April 2013. Application cost ($6.58/acre/application) comes from Lazarus 

(2013).  USDA Prices Paid Indices (Ag Chem & mach) are used to adjust the fungicide price and 

application cost in 2013 to nominal prices in previous years.  
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Table 2. Summary Statistics for Tomato Revenue, Late Blight Disease Rating, and Fungicide. 

No. of observations is 112.  

 Spray Schedule 

Item 7-Day  DSS 

 Mean S.D  Mean S.D. 

Susceptible Cultivars      

      

Number of Fungicide Applications* 11.00 0  12.6 2.6 

Disease Rating (RAUDPC)*** 0.1023 0.1210  0.0048 0.0165 

Cost of Fungicide Applications*  $ 124.02  13.25  $  141.56  29.30 

Net Income over Fungicide Cost per Acre $ 9,230.62  658.81  $ 9,213.08  656.82 

      

Moderately Susceptible Cultivars      

      

Number of Fungicide Applications* 11.0 0.0  8.8 1.9 

Disease Rating (RAUDPC) 0.00734 0.0445  0.00340 0.0160 

Cost of Fungicide Applications*  $ 124.02  13.25   $ 98.72  21.5 

Net Income over Fungicide Cost per Acre $ 9,230.62  658.81  $ 9,255.92  658.8 

      

Moderately Resistant Cultivars      

      

Number of Fungicide Applications* 11.0 0.0  6.8 1.4 

Disease Rating (RAUDPC) 0.000654 0.00491  0.000216 0.00071 

Cost of Fungicide Applications*  $ 124.02  13.25   $ 76.00  16.4 

Net Income over Fungicide Cost per Acre $ 9,230.62  658.81  $ 9,278.64  660.74 

      

* , **, ***Mean difference is statistically significant at 1% , 5%, and 10% significant level. 

 

  



15 
 

Table 3.  Certainty Equivalent of Net Income over Fungicide Costs per Acre for Randomly 

Selected Start Date Scenario. 

 Spray Schedule  Difference 

Item 7-Day DSS   DSS over 7-

Day 

     

Susceptible Cultivars     

     

r=0  $     9,251.42   $     9,233.73    $         (17.69) 

r=1  $     9,227.88   $     9,210.34    $         (17.54) 

r=3  $     9,183.29   $     9,166.06    $         (17.23) 

r=5  $     9,142.28   $     9,125.39    $         (16.89) 

     

Moderately Susceptible Cultivars     

     

r=0  $     9,251.42   $     9,276.88    $           25.46  

r=1  $     9,227.88   $     9,253.42    $           25.54  

r=3  $     9,183.29   $     9,209.02    $           25.73  

r=5  $     9,142.28   $     9,168.23    $           25.95  

     

Moderately Resistant Cultivars     

     

r=0  $     9,251.42   $     9,299.51    $           48.09  

r=1  $     9,227.88   $     9,276.00    $           48.12  

r=3  $     9,183.29   $     9,231.50    $           48.21  

r=5  $     9,142.28   $     9,190.61    $           48.33  

          

Note:  r is the relative risk aversion coefficient.  A power utility function is assumed. 

 


