Assessing the socio-economic determinants for adoption of conservation agriculture practices among smallholder farmers: A case study in the mid-hills of Nepal

Catherine Chan, University of Hawaii Jacqueline Halbrendt, Wageningen University Steven A. Gray, University of Massachusetts

Agricultural Adoption Issues

- Introduced agricultural practices often abandoned for traditional methods
- Factors influencing adoption can be personal, social, economic, and cultural, including:
 - Age Gender
 - Education E
- Economic status
 - Social responsibility Knowledge of natural resources
- No universal determining factors identified
- Highly contextual due to varying local and ecological conditions and individual goals/ motivations

Study Area: Central Mid-hills, Nepal

- Mid-hill agriculture supports half of Nepal's population
 - Important for food security
- Selected villages characterized by:
 - Size (26-42 HH), food insecurity, subsistence farming, marginal, small landholdings (<1 ha)
- Cultivate highly sloping, degradation-prone land
- Practice continuous cultivation, terracing, and mono-cropping

Research Questions

- What are the significant socio-economic factors contributing to individual farmers' likelihood of adoption of CA?
- What are the major constraints leading to non-adoption of CA?

Farmer Characteristics: Methods

- ① Conduct individual surveys to measure:
 - Farmer characteristics
 - Resource/economic characteristics
- Use self-reported history of CA implementation (dependent variable) to identify adopter and nonadopter groups
- ③ Conduct Cronbach's alpha to test internal consistency of latent variables (indices)
- Use a Logit regression model to determine contributing factors that characterize adopters and non-adopters
- 56 surveys representing 82% of households

Binomial logistic regression model

- Incorporates multiple independent variables
- Determines the degree and direction of influence each variable has on a dependent variable
- Dichotomous dependent variable
 - □ ADOPTER or NON-ADOPTER
 - Hedgerow technology used as proxy
 - Introduced 10 years ago
 - Analogous to CA due to similar soil conservation benefits and minimal inputs
- 12 explanatory (independent) variables

Theoretical Logit model

Variable	Definition Predicted dire of influence						
Dependent variable							
	1 = ADOPTER, has implemented hedgerow technology on farm						
Y _i	0 = NON-ADOPTER, has never implemented hedgerow technology on farm						
Explanatory variables							
Farmer characteris	tics						
AGE	Age of farmer in years	-					
GENDER	1 = Female, 0 = Male	-					
EDUCATION	Years of formal education completed	+					
TRUST	Index of trust in NGO staff, projects, and	+					
	expertise						
Resource/economi							
INCOME	I otal on- and off-farm annual household income	+					
FARMSIZE	Total hectares of farm	+					
LABOR	Number of adult household members contributing to agricultural labor	+					
FOODSECURITY	Household Food Insecurity Access Scale	-					
INFORMATION	Level of interaction with agriculture extension or NGOs in past 2 years: 0 = none/low, 1 = moderate, 2 = high	+					
EXPERIENCE	Number of years involved in farm decision- making (shared or total control)	+					
ENVIROCONCERN	Index of farmer perception of environmental degradation and need for conservation	+					
LANDTENURE	1 = owns land title, 0 = does not own land title	+					

Index of TRUST in NGOs

• 12 questions related to goals, values, accountability, expertise of NGO projects and staff

Sample questions:

- Do you think that the goals of NGO projects are the same as your own goals for your farm?
- When someone from an NGO makes a promise, does it usually happen?
- In general, do NGO projects meet their stated goals?
- Do NGO workers provide technical knowledge or expertise?

Household Food Insecurity Access Scale

- 9 questions related to household food availability, quantity, and diversity over the past month
- Uses a Likert scale: 0-no, 1-rarely, 2-sometimes, 3-often
- Higher scores indicate greater food insecurity (MAX=27)

Sample questions:

- In the past 4 weeks (due to lack of food) did you or any household member:
 - Eat a smaller meal than you felt you needed?
 - Eat fewer meals in a day?
 - Eat a limited variety of foods?
 - Go to sleep hungry?

ENVIROCONCERN Index

• 12 questions regarding concerns over crop yield, soil quality and erosion, and water availability

Sample questions:

- How has the amount of your crop yields changed in the past 5 years? (increasing/decreasing)
- What is the condition of soil erosion on your farm in the past 5 years? (increasing/decreasing)
- Do you think there is a need to improve water availability on your farm? (yes/no)
- Do you think the actions you take can affect soil quality? (yes/no)

Adjusted Logit model equation

- ENVIROCONCERN index was removed due to inconsistency found in Cronbach's Alpha (0.454)
- LANDTENURE & EXPERIENCE removed due to lack of significance in stepwise regression analysis
- 9 explanatory variables in the adjusted Logit model

 $Y_{i} = \beta_{0} + \beta_{1}AGE_{i} + \beta_{2}GENDER_{i} + \beta_{3}EDUCATION_{i} + \beta_{4}TRUST_{i} + \beta_{5}INCOME_{i} + \beta_{6}FARMSIZE_{i} + \beta_{7}LABOR_{i} + \beta_{8}FOODSECURITY_{i} + \beta_{9}INFORMATION_{i} + \varepsilon_{i}$

Results: What are the significant Farmer Characteristic factors contributing to individual farmers' likelihood of adoption of CA?

Overall model was significant

- □ 29.9-43.4% of the variance (Cox & Snell R²; Nagelkerke R²)
- 81.8% of cases correctly classified
- All farmer characteristic variables significant

Variable	β	S.E.	Sig.	$\mathbf{e}^{m{eta}}$		
Farmer characteristics						
AGE	-0.096	0.055	0.082 ^b	0.908		
GENDER	-1.906	1.076	0.076 ^b	0.149		
EDUCATION	-0.559	0.260	0.031 ^a	0.572		
TRUST	0.383	0.226	0.090 ^b	1.466		

^a Significant at 5%

^b Significant at 10%

Results: EDUCATION

- >53% of respondents no formal education
- 1 respondent had >6 years education
- Skewed distribution of data may affect directionality
- Existing literature generally considers higher levels of education than represented in this study
- The model showed that with every additional year of education, farmers were 0.57 times less likely to become CA adopters
- This could be a function of less education leading to greater reliance on external information, such as NGOs, and a greater willingness to adopt

Results: What are the significant Resource/Economic factors contributing to individual farmers' likelihood of adoption of CA?

FOODSECURITY highly significant

- □ FARMSIZE, LABOR, INFORMATION not significant
- INCOME significant, opposite direction of influence

Variable	β	S.E.	Sig.	e^{eta}			
Resource/economic characteristics							
INCOME	-0.017	0.009	0.048 ^a	0.983			
FARMSIZE	2.459	2.200	0.264	11.689			
LABOR	0.399	0.295	0.176	1.490			
FOODSECURITY	-0.193	0.083	0.020 ^a	0.825			
INFORMATION	0.574	0.556	0.302	1.775			

^a Significant at 5%

^b Significant at 10%

Results: INCOME

- Wide range of values, from <500 NPR (5.09 USD) to almost 300,000 (3,043 USD)
 - Average income: 87,150 NPR (887 USD).
- Higher incomes from livestock and off-farm wage earning
 - Some remittance from family members (16% households)
- This indicates that, as households earn more income through livestock or off-farm activities, they may become less invested in improving cultivation

Farmer Characteristics: Conclusions

- Improving food security in the short-term can allow for longer-term conservation efforts
- Identification of demographic factors (age, gender) inhibiting adoption can contribute to understanding farmer perspectives and priorities
- Trust is critical to co-management of resources, though transfer of information may require improved implementation strategies
- The dynamics between education, off-farm wageearning, and investments in conservation on smallholder farms are areas for further research

Thank you / Mahalo / Dhanyabad

Acknowledgements:

- USAID/FtF Food Security Innovation Lab: Collaborative Research on Sustainable Agriculture and Natural Resource Management
- Local Initiatives for Biodiversity Research and Development (LI-BIRD)
- Institute for Agriculture and Animal Science, Tribhuvan University