Good Cold Chain Practice

Dr Esbeth van Dyk
CSIR Built Environment – Transport & Freight Logistics

Ms L Haasbroek, Dr L Goedhals-Gerber, Prof M Dodd, Mr H Freiboth
Stellenbosch University – Departments of Logistics & Horticulture

IFAMA Symposium, Cape Town
16-19 June 2014
Contents

• Background on Good Cold Chain Practice study
• Observations in cold chain
• Analysis of temperature data
• Trials
• Good Cold Chain Practice guide
Background on Good Cold Chain Practice study

• Concern in fruit industry that large amount of fruit and money is lost every season due to breaks in the cold chain
• Aim of study:
 • to determine possible causes of breaks in the cold chain from pack house to vessel
 • to develop Good Cold Chain Practice guide
• Study was funded by Post-Harvest Innovation fund with co-funding from CSIR and SU.
Importance of temperature

• Temperature is the largest determinant of fresh produce deterioration rates and potential shelf life, e.g.
 Grapes deteriorate more in 1 hour at 32°C than during 1 day at 4°C or a full week at 0°C (Thompson et al, 2008)
• Humidity also extremely important
• The higher the temperature, the higher the risk of quality problems
• The effect of breaks are additive
Understanding temperature breaks

• Focused on fruit exported in reefer containers
• Focused on fruit that is sensitive to temperature:
 • grapes, summer pears and plums
• Made observations at farms, pack houses, cold stores and Cape Town Container Terminal
• Analysed historic temperature data
• Conducted temperature trials
Observations
Observations on farms

• Fruit picked in high temperatures during middle of the day
• Picked fruit waiting for long time in high temperatures to be transported to pack house
Observations at pack houses

- Fruit received outside in shade
- High temperatures inside pack house
- Fruit too warm when packed
Observations at cold stores

- Airlock loading bays usually not available so fruit stand outside under roof in high temperatures while waiting to be loaded into container
Observations at port

• Both reefer stacks now fitted with Refcon container monitoring system, but not all containers /vessels fitted with modems

• Long queues of trucks waiting to enter port – containers from cold stores that are less than 2 hours travel time from port do not have gensets
Analysis of temperature data
Analysis of historic temperature data

- Commodities included in the study: apples, pears, plums and grapes
- Export supply chain: fruit exported from the Port of Cape Town to Europe and the United Kingdom
- Define a break in the cold chain as any rise in ambient temperature above 2°C, for longer than 90 minutes
- Data analysed for 123 containers from 2012/13 season
- 183 breaks were identified
Total number of breaks per container

- 0 breaks: 13.00
- 1 break: 60.00
- 2 breaks: 31.00
- 3 breaks: 9.00
- 4 breaks: 8.00
- Never cooled: 2.00
Length of breaks in hours

<table>
<thead>
<tr>
<th>Break Length (h)</th>
<th>Number of Breaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 02h</td>
<td>18.00</td>
</tr>
<tr>
<td>02 - 04h</td>
<td>43.00</td>
</tr>
<tr>
<td>04 - 06h</td>
<td>18.00</td>
</tr>
<tr>
<td>06 - 08h</td>
<td>20.00</td>
</tr>
<tr>
<td>08 - 10h</td>
<td>12.00</td>
</tr>
<tr>
<td>10 - 12h</td>
<td>9.00</td>
</tr>
<tr>
<td>12 - 14h</td>
<td>5.00</td>
</tr>
<tr>
<td>14 - 16h</td>
<td>4.00</td>
</tr>
<tr>
<td>16 - 18h</td>
<td>5.00</td>
</tr>
<tr>
<td>18 - 20h</td>
<td>5.00</td>
</tr>
<tr>
<td>20 - 22h</td>
<td>4.00</td>
</tr>
<tr>
<td>22 - 24h</td>
<td>1.00</td>
</tr>
<tr>
<td>More</td>
<td>40.00</td>
</tr>
</tbody>
</table>
Severity of the breaks shorter than 2 days
Summary of temperature breaks

<table>
<thead>
<tr>
<th></th>
<th>Cold store</th>
<th>Truck</th>
<th>Reefer stack</th>
<th>Load vessel</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of breaks originating</td>
<td>23</td>
<td>84</td>
<td>60</td>
<td>16</td>
</tr>
<tr>
<td>No of breaks continuing to next segment</td>
<td>18</td>
<td>77</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Duration of break</td>
<td>1:30 – 24 days</td>
<td>1:30 – 20 days</td>
<td>1:30 – 16 days</td>
<td>1:30 – 17 days</td>
</tr>
<tr>
<td>Origin of breaks of longer than 1 day</td>
<td>7</td>
<td>21</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Max temp</td>
<td>2.8°C – 13.4°C</td>
<td>2.8°C – 26.6°C</td>
<td>2.1°C – 19.7°C</td>
<td>2.1°C – 13.81°C</td>
</tr>
</tbody>
</table>
Trials
Trial data: apples from Ceres (1)

Ambient temperature from the cold store to the vessel

- Loaded at cold store
- Gate in at port
- Loaded onto vessel
- Vessel departs
Trial data: apples from Ceres (2)

Ambient temperature versus fruit pulp temperature

- Loaded at cold store
- Gate in at port
- Loaded onto vessel
- Vessel departs
Trial data: grapes from Hex River

- Plugged in at port
- Vessel sails

Date and Time

Temperature in Degrees Celsius

- Probe 1
- Probe 2
- Probe 19
- Probe 20
Good Cold Chain Practice Guide
Pack houses with roofs that are not insulated cause high room temperatures.

Pack houses with insulated roofs help keep the room temperatures low.
Loading of container

Loading of pallets mostly happens outside in warm temperatures.

Making use of airlock loading bays is the ideal.
Thank you