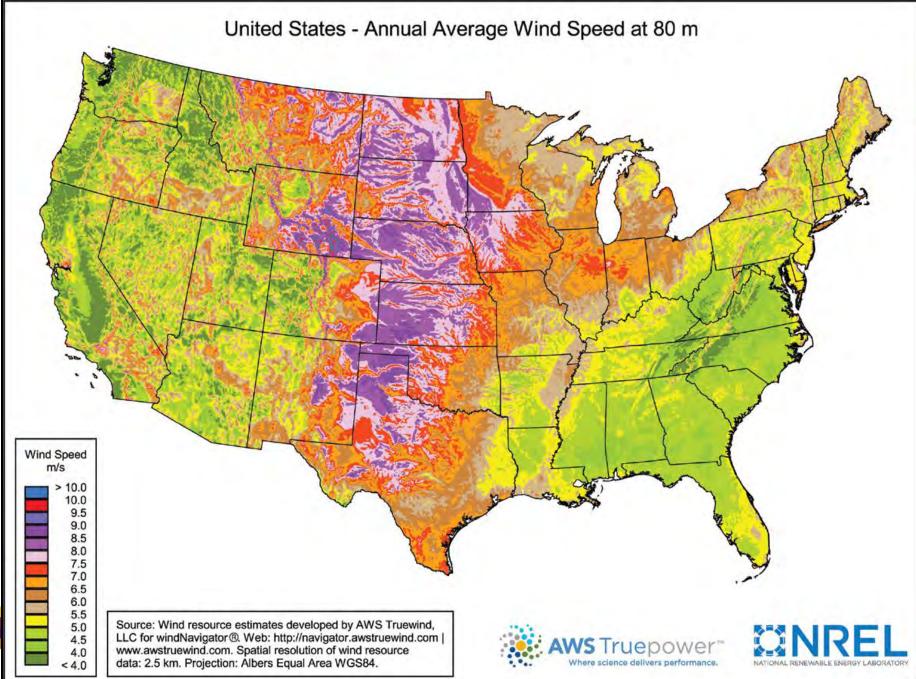
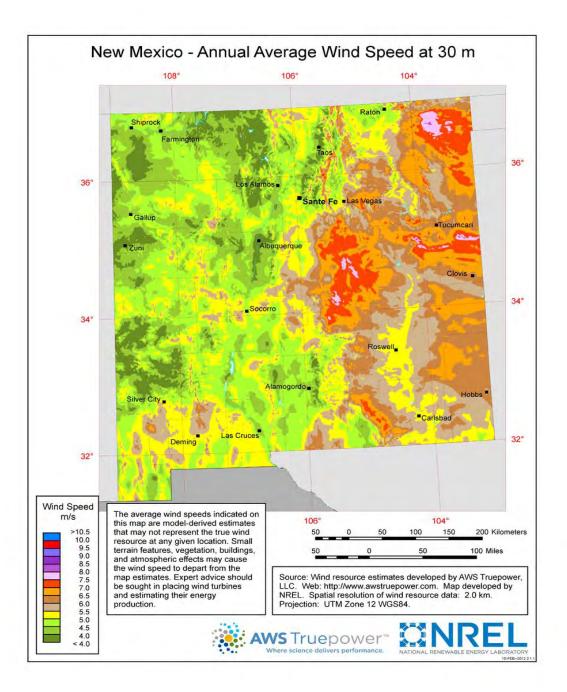

# Wind as Renewable Energy Option for Rural Southwest

Alejandro E. Bernal and Ram N. Acharya





# Objective

- To understand how certain factors influence the installation rate of small wind turbines
- To evaluate the effectiveness of the New York small wind incentive program









# Initial Findings

### **Initial findings for New York** – 169 Installations

|         | Size |           |           | Height | kWh    | Capacity | Payback |
|---------|------|-----------|-----------|--------|--------|----------|---------|
|         | (kW) | Cost      | Incentive | (ft)   | Output | Factor   | period  |
| Min     | 1    | \$13,000  | 5%        | 45     | 1,357  | 2%       | 4       |
| Average | 9.5  | \$71,885  | 46%       | 117    | 11,428 | 14%      | 23      |
| Max     | 20   | \$181,500 | 83%       | 140    | 35,621 | 29%      | 282     |

(Source: New York State Energy Research and Development Authority)





### **Initial findings for California** – 472 Installations

|         | Size |           |
|---------|------|-----------|
|         | (kW) | Cost      |
| Min     | 0.4  | \$2,204   |
| Average | 7.2  | \$40,266  |
| Max     | 20   | \$141,822 |

(Source: California Energy Commission)



# Previous Research

- Jacobsson and Johnson (2000) highlight the importance of <u>social networks</u> that aid in the diffusion of new renewable technologies
- Durham et al. (1988) demonstrate that the likelihood of solar hot water heater installation increases with <u>some</u> <u>level of college education</u> and <u>household size</u>
- Rothfield (2010) finds that if the consumer faces a <u>high</u> <u>electricity price</u> they are more likely to install PV panels



# Previous Models

- Durham et al. (1988) refer to consumer maximization theory to develop a probit model that predicts the probability of installing solar hot water heating
- Rothfield (2010) studied the probability of installing photovoltaic panels
  Small wind is comparable to solar PV panels, for this reason the Durham el al. (1988) and the Rothfield (2010) models will be extended to small wind turbines



## **Theoretical Framework**

# $$\begin{split} WIND &= \beta_0 + \beta_1 POP + \beta_2 WHT + \beta_3 YOU + \beta_4 MID + \beta_5 OLD \\ &+ \beta_6 TOT + \beta_7 CAP + \beta_8 EDU + \beta_9 INC + \beta_{10} CI + \beta_{11} EP \\ &+ \beta_{12} EC + \varepsilon \end{split}$$

|             |              | Variables for Analysis                                               |
|-------------|--------------|----------------------------------------------------------------------|
| Variable    | Abbreviation | Description                                                          |
| Population  | Рор          | Total population in a given zip code                                 |
| White       | Wht          | Percent of population that is White alone, non-Hispanic              |
| Young       | You          | Percent of population that is between 25 and 44 years of age         |
| Middle      | Mid          | Percent of population that is between 45 and 64 years of age         |
| Old         | Old          | Percent of population that is over 65 years of age                   |
| Household   | Tot          | Total average household size                                         |
| Income      | Сар          | Per capita income (dollars)                                          |
| Education   | Edu          | Population 25 years and over with bachelor's degree or higher        |
| Incentive   | Inc          | Federal and state incentive (%)                                      |
| Cumulative  |              | All installs in a given location up to but not including the current |
| Installs    | CI           | period                                                               |
| Electricity |              |                                                                      |
| Price       | Ep           | Average state retail electricity price (\$)                          |
| Electricity |              |                                                                      |
| Consumed    | Ec           | Average monthly electricity consumption by state (kWh)               |



## Data

- Installation data energy departments respective states
- Wind speed data New Mexico Climate Center

(http://weather.nmsu.edu/climate/)

- U.S. Census
- Energy Information Administration
- National Renewable Energy Laboratory
- Turbine model information manufactures websites





# Economic Incentives

#### Summary of Residential Wind Incentives and Rebates for New Mexico

| State/Region/Utility               | Wind Incentive or Rebate Description                                                    |
|------------------------------------|-----------------------------------------------------------------------------------------|
| United States                      | Federal Tax Credit (30% of Cost at Installation)                                        |
| New Mexico                         | NM Renewable Energy Production Tax Credit (\$0.01 per kilowatt-hour of energy produced) |
| NM Utility: El Paso<br>Electric Co | El Paso Electric Co REC Purchase: \$ 0.04/kWh x 8 yrs: to 2020 (<10 kW)                 |
| NM Utility: El Paso<br>Electric Co | El Paso Electric Co REC Purchase: \$ 0.02/kWh x 8 yrs: to 2020 (10 - 100 kW)            |

(Source: <u>http://www.dsireusa.org/</u>)





# Results & Conclusion

- Results are pending
- Critical information for policy makers to keep making sustainable actions and for home owners to be energy independent

- Lacking installation data

