Post-harvest Loss and Sustainable Development

Steve Sonka, Director
June 13, 2012

ADM Institute for the Prevention of Postharvest Loss
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
AGENDA

• Food security/sustainable development challenges

• The "complexities" of post-harvest loss (PHL)

• PHL, agribusiness and development
Global Food Demand Is Predicted to Increase 70% by 2050 (FAO; 2009)

Dietary changes in developing countries
2030 Food Demands Require About 200 Million More Hectares (McKinsey; 2011)

- 2010 demand: 1,535
- Food/feed demand increase: +90
- Land degradation increase: +30
- Climate change impact: +0–45
- Urban expansion increase: +30
- Energy infrastructure increase: +10
- First-generation biofuel demand increase: +15
- 2030 demand: 175–220
- Impact of productivity loss: 1.710–1.755

Assuming 30 percent crop production increase with 1.0 percent per annum yield growth.
Reducing PHL and Increasing Yields Have High Potential (McKinsey; 2011)

<table>
<thead>
<tr>
<th>Societal perspective, 2030</th>
<th>Total resource benefit $ billion (2010 dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building energy efficiency</td>
<td>696</td>
</tr>
<tr>
<td>Large-scale farm yields</td>
<td>266</td>
</tr>
<tr>
<td>Food waste</td>
<td>252</td>
</tr>
<tr>
<td>Municipal water leakage</td>
<td>167</td>
</tr>
<tr>
<td>Urban densification</td>
<td>155</td>
</tr>
<tr>
<td>Iron and steel energy efficiency</td>
<td>145</td>
</tr>
<tr>
<td>Smallholder farm yields</td>
<td>143</td>
</tr>
<tr>
<td>Transport efficiency</td>
<td>138</td>
</tr>
<tr>
<td>Electric and hybrid vehicles</td>
<td>138</td>
</tr>
<tr>
<td>Land degradation</td>
<td>134</td>
</tr>
<tr>
<td>End-use steel efficiency</td>
<td>132</td>
</tr>
<tr>
<td>Oil and coal recovery</td>
<td>115</td>
</tr>
<tr>
<td>Irrigation techniques</td>
<td>115</td>
</tr>
<tr>
<td>Road freight shift</td>
<td>108</td>
</tr>
<tr>
<td>Power plant efficiency</td>
<td>106</td>
</tr>
<tr>
<td>Other³</td>
<td>892</td>
</tr>
</tbody>
</table>

1. Energy, Land, Water, Steel
Why Reduce Post-harvest Loss: Some Hypotheses (or Hallucinations?)

- Estimates suggest 1/3 of agricultural production is “wasted” and doesn’t reach food consumer

- Investment required to reduce PHL could be modest

- Technology advances should make reduction more feasible and less expensive

- Arable land, water, energy is in limited supply – reducing PHL can lessen pressure on scarce resources
AGENDA

• Food security/sustainable development challenges

• The "complexities" of post-harvest loss (PHL)

• PHL, agribusiness and development
Post-harvest loss estimates in South & Southeast Asia

- Cereals: 22%
- Roots & Tubers: 49%
- Oilseeds & Pulses: 30%
- Fruit & Vegetables: 66%

- 22% consumption
- 49% distribution
- 30% processing and packaging
- 66% postharvest handling and storage
- 66% agricultural production

PHL Varies by Commodity (FAO; 2011)
In SE Asia, physical losses range from 15-25%.

Quality losses range from 10-30% (loss in value)
PHL in grains is 18% (2% - 5% in storage) (1992)

PHL in storage in villages is 8% to 10% (farmer storage is primarily through traditional methods) (2006)

PHL higher in fruits & vegetables (2003)
 - Fruits; 20% to 25%
 - Vegetables: 30%

PHL of rice in total exceeds 14%
AGENDA

- Food security/sustainable development challenges
- The "complexities" of post-harvest loss (PHL)
- PHL, agribusiness and development
Reducing PHL is a LOCAL Activity
“Organizational” Learning is Required for Broader Progress to Occur
Priority Needs

- Measurement of loss
- Investable implementation framework
- Quantum jump/reverse innovation technologies