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Abstract 
 
In a risk analysis framework, food chain safety measures should be objective and 
scientifically based. Network science – as a decision support tool – may have an important 
role in bringing safety to the food supply.  
 
The aim of the present work is to develop a network-based assessment methodology for 
Hungarian cattle holdings. The criteria of which is (1) suitable for risk-based planning in 
order to put resources into the most critical elements of the cattle production network; (2) 
should be capable of simulating different epidemiological situations in order to increase 
preparedness for real epidemics.  
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Introduction 

Cattle breeding and trade have been an important part of economic life in the Carpathian 
basin since the late Iron Age (Bökönyi 1971). Hungarian landholders were important 
suppliers of animals to markets in Italy and Poland in the middle ages (Sugar et al. 1994). 
During the Communist regime, which lasted from after the Second World War to 1989, the 
overwhelming majority of cattle production was concentrated in large-scale production 
cooperatives and state farms (Csizmadia 1974). While these state and cooperative farms 
decreased efficiency and productivity considerably, they made veterinary inspection of 
bovine herds relatively simple. After the system change in 1989, as a result of the agricultural 
transition and privatization, the number of bovine herds increased but the professional quality 
of management remained relatively unchanged (Csáki 1990).  
 
Food chain safety “from farm to fork”—together with its elements such as animal health or 
food safety—are the focus of both the agri-food industry and the control authorities. With the 
increasing volume and complexity of international trade, traceability issues have become 
more important than ever. Additionally, bovine-related veterinary problems (in particular 
BSE, foot and mouth disease) have increased the importance of veterinary management and 
inspection of herds worldwide (Nikiforuk 2008). The cattle passport system of the EU, as 
well as national animal movement detection systems (Dubé et al. 2009), offer the possibility 
of tracing animal movements. 
 
It is well documented that the herd epidemiology is considerably influenced by the mobility 
of animals (Kao 2002; Kao et al. 2007). The arrival of new, infected animals on non-infected 
herds increase the probability of disease transmission. The EU animal health strategy 
highlights the importance of individual animal identification, supporting legal and financial 
issues necessary for data collection on animal transportation. 
 
The increasing integration of the Hungarian agri-food system into the EU—as a consequence 
of both trade liberalization and EU membership—have made the situation even more difficult 
(Bojnec and Fertő 2009; Coulombier and Takkinen 2013). The food chain safety authority is 
faced with a mission which is practically impossible to implement using traditional methods: 
i.e. increasing the effectiveness and reliability of food chain control (veterinary inspection of 
herds in particular) while at the same time given declining resources (Luning et al. 2015). 
 
The Risk Analysis Framework 
 
It is essential to maintain the health of plants, animals and humans to ensure the chemical and 
microbiological safety of our food (‘food chain safety’), while maintaining the sustainability 
of agri-food production and trade (‘food security’). Food chain industry stakeholders—who 
have primary responsibility for ensuring safety—need to apply a hazard analysis framework 
to ensure a process-based, preventative, effective operation. Food chain control authorities, 
when making decisions on control and intervention issues, must use the risk analysis 
framework as defined by FAO/WHO (2007). 
 
Risk analysis is used to develop an estimate of the risks to human health and safety (risk 
assessment); identify and implement appropriate measures to control the risks (risk 
management); and communicate with stakeholders about the risks and measures applied (risk 
communication). Risk is defined in this context as a product of the severity of the hazard and 
the probability of its occurrence. Based on FAO/WHO guidelines, EU member states have to 
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apply a risk-based approach managing food chain safety risks: Article 3 of Regulation 
882/2004/EC (European Parliament and the Council 2004) states that ‘Member States shall 
ensure that official controls are carried out regularly, on a risk basis, and with appropriate 
frequency’. This means that risk managers should focus their resources on high risk entities: 
business operators, foodstuffs or particular hazards. During the risk-based planning of official 
controls, competent authorities have to take into account all of the objective evidence 
contributing to better decision making in the risk analysis framework. In this context, as a 
part of planning the most effective risk management options, different risk assessment and 
risk ranking methods are available, along with different planning techniques. Authorities 
have to choose whichever methods best fit their needs and resources. Continuous 
improvement and new methodologies are in the forefront of research. 
 
Big Data and Network Science in the Field of Food Chain Safety 
 
The need for handling, analysis and interpretation of large, interrelated datasets in various 
scientific fields, together with the rapid development of information-technology tools, have 
resulted in newly emerging data-related scientific fields. Their common characteristic is that 
with the use of computational science tools such rules or patterns could be identified which 
would otherwise be very hard or impossible using smaller datasets (Baranyi et al. 2013). 
Globalization, particularly its sociological and commercial aspects, started research of 
complex networks in the late 90's (Anderson and Marcouiller 2002). It quickly became 
evident that the structure and evolution of the networks showed many similarities regardless 
of what they represent (Baranyi et al. 2013). This phenomenon boosted research in different 
scientific fields which, after a short initial phase, network analysis methods found an 
application in many areas. It is used in sociology for the representation of the individuals and 
their relationships (Stanley and Katherine 1994; Salathé and Jones 2010), for mapping genes, 
proteins and their interactions with each other in molecular biology (Barabási and Albert 
1999), and helps in the identification of business relationship of companies in different 
economical analysis (David and Douglas 1992).  
 
As a definition (Börner et al. 2007) network science concerns itself with the study of different 
networks, be they social, biological, technological or scholarly networks. Its goal is to 
contrast, compare and integrate techniques and algorithms developed for a wide range of 
disciplines, primarily mathematics and statistics. Barabási (1999) compares the emergence of 
this science with sweeping developments in quantum mechanics in the 20th century. In his 
opinion, network sciences are building a theoretical and algorithmic framework which is 
energizing many research fields. “Born at the twilight of the twentieth century, network 
theory aims to understand the origins and characteristics of networks which hold together the 
components of various complex systems.” 
 
Data science, particularly network science, has an important role in food science enhancing 
security and safety of the food supply as well. Analysis tools based on network theory can be 
used in the risk-based control and monitoring systems of food business operators by 
analyzing their commercial relations with each other (Chmiel et al. 2007). 
 
Borgatti et al. (2009) highlight that, over the past decades, network theory has supplied a 
valuable tool in explaining different social phenomena. In management science it has been 
widely used in supply chain management (Lazzarini et al. 2001), international trade analysis 
(Smith and White 1992), organizational development (Wasserman and Faust 1994) and 
policy analysis (Wagner and Leydesdorff 2005). 
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In the opinion of Fritz and Schiefer (2008), management challenges in closely co-operating 
enterprises, as well as the mutual dependence of all participants in the food chain, necessitate 
the application of network science in this area. The application of network science at the 
inter-firm level in agribusiness management is highlighted by Ng and Siebert (2009). In the 
most recent literature there are numerous examples of the successful application of network-
theory approaches in the development of agribusiness systems, from the development of 
agricultural extension programs (Lehmann et al. 2012) to supply chain management (Farhat 
2012). 
 
Besides management science, network analysis is claimed to be an effective tool in food 
chain safety analysis as well. The first applications of network science in the field of food 
chain safety were aimed at mapping connections between countries or businesses. Petróczi et 
al. (2010, 2011) analyzed the notification data of the Rapid Alert System for Food and Feed 
(RASFF) of the European Commission. They identified European trade and notification 
patterns using network science methodology, using the model to forecast as well. Not only 
countries but different businesses were later analyzed for epidemiological purposes: Lentz et 
al. (2011) explored pig transport routes in Germany, showing hubs where cross infection was 
more likely. Ercsey-Ravasz et al. (2012) identified the most critical agri-food trade routes 
based on publicly available trade data. They drew attention to the fact that every second food 
batch produced is exported—and this proportion is increasing—providing proof of 
continuously growing international trade and an increasing need for the application of 
complex sciences. 
 
The application of network theory for the analysis of animal migration has some decades-
long tradition (Rommel et al. 1973; Harris 1979), but the conscious application of animal 
transportation data for the prevention of epidemiological problems is relatively new. This 
process is boosted by the rapid development of cattle identification systems. The 
comprehensive review of the New Zealand Ministry of Agriculture and Forestry offers a 
general overview on selected cattle identification and tracking systems worldwide (MAF 
2009). The review proves, in which (1) all of the reviewed systems are implementing 
individual cattle identification requirements; (2) there is an increasing tendency to apply 
RFID technology; (3) most of them are mandatory; and (4) these systems are administered by 
governments or under industry-government partnerships. In the opinion of Schroeder and 
Tonsor (2012), cattle identification and traceability is becoming a necessary pre-condition for 
the international competitiveness of cattle and the cattle-product export market. In the last 
few years Dubé et al. (2008) has applied the network analysis approach to analyze and 
prevent foot and mouth disease. Martinez-López et al. (2009) have analyzed the trans-
boundary flow of animals with the purpose of implementing disease prevention measures. 
Bajardi et al. (2011, 2012) mapped the Italian cattle trade network and made great progress in 
analyzing dynamic patterns, using network science tools to optimize cattle farm surveillance. 
 
Motivation 
 
When analyzing risk, food chain safety measures should be based on objective and 
scientifically based evidence. In most cases authorities are already using existing 
international risk assessments, risk ranking, risk-based priority setting tools, models, studies, 
and literature data. However, the data needed for substantiated risk assessment are in many 
cases not available. The lack of data or possible delays in providing updated records may 
hinder their use, especially for time-varying patterns (Valdano et al. 2015). 
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Our experience obtained in Hungarian and European food chain safety control planning 
systems show that, conventionally, risk is determined by the size of the herd as the frequency 
of official controls is determined by the number of animals present at any given time (taking 
into consideration other risk factors such as production type (dairy, meat, etc.) and the results 
of previous inspections). The calculations are based on the conventional risk approach as a 
product of severity of the hazard and the probability of occurrence. However, the 
effectiveness of this targeting mechanism can be questioned in many cases (Van Asselt et al. 
2012). 
 
One of the most important problems of this approach is that it doesn’t take into account the 
network flow and the dynamics of the network; just the pure output or production data. The 
flow of animals denotes the animals transported from one node of the network to another 
during a given time period. A dynamic network is defined as a network where one or more of 
its relevant parameters (e.g. size of nodes, flow, etc.) changes as a function of time (Friesz et 
al. 1993).  
 
The other drawback of the traditional risk based planning procedure is that it serves to set 
control priorities but is not suitable for epidemiological simulation exercises as the picture it 
captures is very static. Furthermore, the risk-based planning procedures of different member 
states are not cross-compatible, making international assessment very difficult or even 
impossible, and resulting in high coordination costs and significant delays when managing 
cross-border food chain incidents.  
 
The cattle network consists of numerous closely cooperating holdings under the influence of 
natural (biological) and socio-economic factors, forming a network where the hubs of the 
network are the economic entities (e.g. farms, slaughterhouses, etc.) and the edges are the 
cattle-movements. The size of the hubs and edges can be considered as stochastic variables 
because the economic activities of the different entities show a considerable fluctuation. To 
minimize the risk of problems we have to understand the immanent structure of the network 
on the basis of network science. This will serve to fine-tune the strategy of decreasing risks of 
an epidemiological nature.  
 
Network analysis is capable of capturing the time-dependent characteristics of the trade flow 
as well as selecting the highest risk nodes by their network characteristics. Furthermore, it is 
able to serve as a basis for epidemiological simulation exercises. Our motivation is to find a 
risk ranking tool which is able to capture those aspects of a functioning trade network. 
 
Objectives 
 
The aim of the present work is to develop a network-based assessment methodology, which is 
(1) suitable for the risk based planning of official controls (setting priorities based on network 
science) in order to place resources on the most critical elements of the cattle production 
network; (2) capable of simulating different epidemiological situations to increase 
preparedness for real epidemics using network-based spreading models. A majority of these 
models are based on system dynamics (Bagni et al. 2002) and in the last years agent-based 
simulation approach (Dion 2011), although there is a rapid development of Bayesian geo-
statistical methods as well (Jewell et al. 2013; Ward et al. 2013). However, a critical point of 
all of these models is the quality of input data. Our results will shed light on how to prepare 
and interpret data for analysis. Finally, (3) to share the analysis methodology and algorithms 
with the network science and food chain safety community to enhance cross-compatibility of 
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methods, making it possible to expand simulation exercises and risk-based planning 
processes across borders (since real world risks don’t respect borders). 
 
All of those objectives contribute to a methodology of letting decision-makers elaborate an 
optimized strategy for the inspection of cattle herds, control of cattle-traffic, and strategies for 
epidemiological crisis situations. 
 
The hypotheses of the present work are (1) the Hungarian cattle network can be characterized 
as a scale free network; (2) the vulnerability of the network can be analyzed on the basis of 
the ‘centrality’ characteristics of different hubs of the network. The most vulnerable parts of 
the network are not necessarily the largest hubs, rather the ones which can be considered 
central parts of the network; (3) one centrality measure is not necessarily enough to 
characterize the centrality position of a given vertex, because the different centrality 
indicators reflect differently from every other aspect of the vertices (Friedkin 1991; Marsden 
2002); (4) the Hungarian cattle network is a dynamic one. This means that the network size, 
the flow intensity of animals and other network properties, including centrality, can be 
characterized as considerably time-dependent. 
 
We have applied wide ranging network analysis tools to determine the characteristic features 
of different nodes of the network and their time-variance. In this way we were able to 
characterize the Hungarian cattle trade network, improving the current control strategy and 
preparing for a possible crisis situation. This application of network science can be 
considered a relatively novel one as this paper shows a practical application of network 
theory by a food chain safety authority. This example of the application of a network science 
approach, based on big data analysis, can be considered a possible solution to a heretofore 
intractable big data-related problem in the food chain safety field. 
 
Our aim was to shed light on the characteristic features of a given trade network (using the 
Hungarian cattle trade network as an example) for the purposes of increasing the 
effectiveness of food chain safety control and preparation for a possible outbreak. Lists of the 
most risky holdings obtained through the network analysis are used by risk managers while 
planning their annual control plans. Our model contributes to greater Hungarian food chain 
preparedness in a critical situation as it demonstrates a methodology which suitably 
determines the most critical parts of the network. It is not possible to offer a more concise and 
intelligible solution, because—as we will demonstrate – the actual features of the network are 
time-dependent variables. 
 
Methods 
 
Data Source 
 
The cattle trade network is obtained using the database of the national cattle identification 
system (ENAR). This system is able to follow the animals along their whole life cycle from 
birth to slaughterhouse or from entering the territory of Hungary to their export. It has a legal 
background based on Regulation 1760/2000/EC on animal identification (European 
Parliament and the Council 2000), which makes the use of the system obligatory. In this way 
a continuous dataflow is generated, supplying more than 1000 lines of raw data each day. 
Each line represents an animal movement between two nodes. Each movement record reports 
the unique identifier of the animal, the codes of the holdings of origin and destination and the 
date of the movement.  
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To understand the structure and the characteristic features of this data flow an application of 
specific methods and approaches is needed. We have applied network analysis which has 
served as a tool for managing large amount of data. 
 
Network analysis, as an interdisciplinary field of science, considers the relationship between 
organizations as a graph (Albert and Barabási 2002; Barabási 2002). The graph consists of a 
set of vertices and a set of edges (Tichy et al. 1979). In this case the vertices (or nodes) are 
(1) cattle-exporters to Hungary; (2) importers buying living cattle from Hungary and (3) 
various economic organizations—so called holdings—including farms, slaughterhouses, 
logistics/distribution centers, markets, artificial insemination stations, incinerators, fairs and 
animal health institutions. Movements are the transportation events of living cattle between 
different nodes. These are represented in our model as edges between nodes. These edges are 
called flows in graph theory when analyzing transportation processes (Wen and Arcak 2004). 
 
The data inclusion criteria were: (1) time period between 01.01.2012.–31.12.2014.; (2) 
operating holdings with legal succession as well; (3) no limitation on age or birth of the 
animals (i.e. they didn’t have to be born before 01.01.2012); (4) animals can die during the 
time period investigated; (5) all animals from the database. 
 
The animal movements taken into consideration involved about 50,000 premises. The reason 
for the three-year time frame was to adequately characterize the Hungarian cattle-network for 
risk-based planning purposes yet not so much as to become outdated. The abovementioned 
trade routes represent approximately half a million movements a year. In the network, nodes 
may be active or inactive depending on whether farms sell or buy cattle in any given time 
frame. 
 
The original raw data consisted of 4,667,479 lines, having 42,928,175 pieces of data 
altogether on animals and 713,482 on holdings. This static raw data was then cleaned and 
transformed through several steps into a static source-target matrix, containing data on 
1,553,683 movements and 52,618 nodes. This static network was broken down into annual 
and monthly representations to analyze the behavior of the network over time. The basic 
network parameters were calculated each month resulting in a dynamic network containing 
54,933,192 pieces of data attributed to nodes and 1,638,000 to edges. 
 
This data-set can be described as a large-volume, complex, growing dataset concerning 
multiple, relatively autonomous parts. That’s why it can be considered “big data” as defined 
by Wu et al. (2014), Power (2014), and Sonka (2014). The dataset satisfies the definition of 
the NIST group (2015) because it ‘exceeds the capacity or capability of current or 
conventional methods or systems’. In the opinion of Ward and Barker, big data is not a set of 
data but ‘a term, describing the storage and analysis of large and complex data steps using a 
series of techniques’ (Ward and Barker 2013). The process of extracting insights from big 
data consists of five steps: (a) acquisition and recording, (b) extraction, cleaning and 
annotation, (c) integration, aggregation and representation, (d) modelling and analysis, (e) 
interpretation. Our current work contains all of these elements and lays down the basis for 
further modelling work. 
 
Network Analysis Methods 
 
The network of cattle holdings and movements were first analyzed to investigate the structure 
of the network and to calculate the main parameters. For each node the following measures 
were calculated: 
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The node degree is the number of relations (edges) of the nodes. However, in the case of the 
directed networks, the in-degree (incoming connections) and the out-degree (outgoing 
connections) values are important as well. Degree has generally been extended to the sum of 
weights when analyzing weighted networks and labelled node strength, so the weighted 
degree and the weighted in- and out-degree was calculated (Barrat et al. 2004; Newman 
2001; Opsahl et al. 2010). These parameters offer an important piece of information on the 
intensity of relations between nodes and their environment. A high in-degree indicates that 
the node can be characterized as prominent; it receives animals from numerous farms. A high 
out-degree indicates that the node is influential because it has extensive connections with 
other farms. The same applies for weighted degrees but here the indicator shows not the 
number of connecting businesses, but the number of animals transported in and out. 
 
In certain networks the nodes with the most important roles are the high degree nodes. 
However, this is a quite simplistic approach and, if the network has a strongly 
inhomogeneous structure (containing many clusters), it is certainly false. Low degree nodes 
connecting clusters in many cases play an important role in the network (Kleingberg 1999). 
 
To understand the relative importance of different hubs in cattle flow besides the usual 
network metrics (e.g. in- and out-degrees, weighted degrees, etc.), we had to apply the 
centrality concepts of network analysis. Despite considerable research efforts invested into 
studying the centrality concept in network science, centrality is still an elusive concept which 
may be approximated from different perspectives where different centrality measures are 
available (Abbasi et al. 2012). We have analyzed betweenness centrality (Kim et al. 2012); 
closeness centrality (Freeman 1979); the two so-called prestige measures of centrality (Faust 
and Wasserman 1992): the hub centrality and the authority centrality (Kleinberg 1999, 2000), 
calculated using the HITS algorithm. There is a considerable difference between those 
centralities: In the case of the authority and hub centrality, a central node can be any node in 
the network, while in the case of betweenness and closeness centralities (as the names 
indicate) the central nodes cannot be the source-vertex or sink-vertex (Okoth and Wagner 
2009). As defined by Newman (2005), a source vertex is a node with an in-degree zero while 
a sink vertex is a node without-degree zero. 
 
The HITS algorithm was developed by Kleinberg (1999). This algorithm is a link analysis 
algorithm which helps in identifying the essential nodes in a graph. It consists of two scores, 
a hub score and an authority score. The authority score of a node is a measure of the amount 
of valuable information that this node holds. The hub score of a node shows how many 
highly informative nodes or authoritative nodes this node points to. So a node with a high hub 
score shows that this node is pointing to many other authoritative nodes. On the other hand, a 
node with a high authoritative score shows that it is pointing to a large number of nodes, and 
as such, serves as a node of useful information in the network. 
 
Betweenness centrality is an even more important statistical property of a network. This 
property is applied to a lot of real-world problems such as finding influential people in a 
social network, finding crucial hubs in a computer network, finding border crossing points 
which have the largest traffic or trade flow. The betweenness centrality of a node is an 
indicator of its centrality or importance in the network. It is described as the number of 
shortest paths from all the vertices to all the other vertices in the network that pass through 
the node in consideration (Brandes 2001). 
 
Closeness centrality indicates how long it will take for information from a given node to 
reach other nodes in the network. The smaller the value, the more central role the node plays 
in the network. 
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We used Gephi open-source software for network visualization and analysis, making possible 
to use more than thirty algorithms and models. There are more than 100 plugins to the 
software, increasing the number of statistical tools (Devangana 2015). However, it was not 
necessary to apply these additional tools in our research. Further statistical analysis was made 
using Microsoft Excel software. 
 
Results 
 
Based upon network analysis it was possible to determine the most important (highest risk) 
flows in the system and construct different models for the cattle-network. On the basis of 
these models we have been able to determine the most important centers of the network 
which is extremely important because it is well-documented that the most vulnerable points 
of a network are not necessarily the largest hubs (Agarval et al. 2014; Wang et al. 2006; 
Wang et al. 2014). 
 
The data-stream offered a possibility to determine the stability of different centralities of the 
system, as well as to analyze the stochastic relationships between these centrality indicators. 
As earlier stated, there is a considerable difference of importance between nodes according to 
their position in the network. The various statistical algorithms of the software tool provided 
a characterization of the cattle movement system, exploring both its structural and dynamical 
properties. There was an opportunity to compare these calculated values for each month and 
with this the central farms, logistics centers, slaughterhouses, and the peripheral holdings 
could be unveiled as well.  
 
Network Structure 
 
Mapping the Hungarian cattle holdings network, it was possible to calculate the basic metrics 
of the network. In network-related literature there is a wide range of indicators used to 
characterize a given network. Some of them aim to determine the position, sets and clusters 
of nodes and their connections. Another group of indicators describe the centrality of 
different nodes or offers information on network density. Other measures help to characterize 
the components, cores and cliques in the network. All of these pieces of information could 
furnish valuable insight into the network analyzed but we had to limit ourselves to simple 
characteristic features of the network.  
 
A key property of each node (in this case, holdings) is its degree, representing the number of 
links it has to other nodes. In the cattle network it means the number of business partners. 
The degree distribution, pk, provides the probability that a randomly selected node in the 
network has degree k. For a network with N nodes the degree distribution is given by the 
equation: 

 
1)  

 
where Nk is the number of degree-k nodes. The degree distribution has a very important role 
in network theory following the discovery of scale-free networks (Barabási and Albert 1999). 
The degree distribution of the Hungarian cattle holdings network (Figure 1) shows a very 
characteristic heavy-tailed distribution specific to scale-free networks. 
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Figure 1. Different plots of the degree distribution of the Hungarian cattle holdings network 
(timeframe: 2012–2014); linear plot (left), log-log plot (right). 
 
This heavy-tailed distribution shows that there are many small nodes (with few connections), 
and there are few very large nodes (with a lot of connections). The scale-free networks are 
networks whose degree distribution follows a power law. To prove the power law distribution 
and to obtain the degree exponent (γ), which is important for further analysis, a cumulative 
distribution was plotted and then a power law curve was fitted (Figure 2). 
 

 
Figure 2. The degree distribution of the Hungarian cattle holdings network presented as a 
cumulative log-log plot from 2012–2014. 
 

  

2)    
 
 
In case of power law the cumulative distribution scales as 
 

3) 𝑃𝑃𝑘𝑘~𝑘𝑘−𝛾𝛾+1   
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The degree exponent for the Hungarian cattle holdings network is 2.24. As this network is a 
directed network, the scale-free property applies separately to the in- and the out-degrees 
(Figure 3).  

 

 
Figure 3. The in-degree and out-degree distributions of the Hungarian cattle holdings 
network from 2012–2014.  
 

Note. Represented as a log-log plot (left) and a cumulative log-log plot (right). The in-degree is marked with 
blue and the out-degree is marked with red dots. 
 
As it can be observed, the degree exponents are different for in-degree (γ = 1.97) and out-
degree (γ = 3.01), showing a substantial difference between the two. This is attributable to the 
specific nodes with a very high in-degree e.g. slaughterhouses. 
 
Similarly, the degree distribution can be calculated for the weighted degrees as well. 
Weighted degrees represent the size of the traffic going through a node; in this case, number 
of animals transported to and from the holdings (Figure 4.). The traffic size is important for 
food chain safety reasons because any epidemiological problem in a herd with intense traffic 
can be proliferated in the network extremely rapidly. That’s why this piece of information 
helps risk management. The degree exponents can be calculated from the cumulative log-log 
plots of the weighted degree distribution (Figure 5). 
   

Figure 4. The weighted degree distributions of the Hungarian cattle holdings network 
represented as log-log plots from 2012–2014.  
Note. The graphs show weighted degree (left) and a weighted in- and out-degree (right) distributions. The 
weighted in-degree is marked with blue and the out-degree is marked with red dots. 
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Figure 5. Weighted degree distributions of the Hungarian cattle holdings network represented 
as cumulative log-log plots from 2012–2014.  
Note. The graphs show a weighted degree (left) and a weighted in- and out-degree (right) distributions. The 
weighted in-degree is marked with blue and the out-degree is marked with red dots. 

 
Interestingly, degree exponents of the weighted degree, weighted in- and out-degree 
distributions are very similar to each other and fall in the range of γ ~ 1.9. The reason behind 
it is that the large weighted degree nodes are typically logistic centers where the incoming 
and outgoing flows are identical. 
 
The results above show that this network has all the intrinsic properties of other scale-free 
networks, highlighting the fact that some holdings have a critical role in the network. 
Identifying those, we make a step towards controlling them. The scale-free name captures the 
lack of an internal scale, a consequence of the fact that nodes with widely different degrees 
co-exist in the same network. This feature distinguishes scale-free networks from lattices, in 
which all nodes have exactly the same degree (σ = 0), or from random networks whose 
degrees vary in a narrow range (σ = ⟨k⟩1/2). This divergence is the origin of some of the most 
intriguing properties of scale-free networks, from their robustness to random failures to the 
anomalous spread of viruses (Barabási 2015).  
 
This means that this network is quite robust against random failures but vulnerable in case of 
targeted attacks.  
 
Having a degree exponent between two and three means this network also shows small world 
properties—meaning that only a few steps are needed to get from a random point to another 
random point—having an important implication in the case of spreading diseases. The 
average path length (steps needed to reach any random node from any other random node) for 
the Hungarian cattle holdings network is 6.92 for the three-year period.  
 
Basic Network Properties 
 
Devising the network’s basic structural properties, other valuable information could be 
extracted from other network measures or indicators. As specified earlier, the degree, in-
degree, out-degree, weighted degree, weighted in-degree and weighted out-degree of the 
nodes was calculated for different holdings, having an objective to set priority lists for 
different control purposes. The top five nodes (highest risk nodes) listed according to various 
properties are presented in Table 1. 
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Table 1. Top five nodes based on degree, in-degree, out-degree, weighted degree, weighted 
in-degree and weighted out-degree (timeframe: 2012–2014).  

  ID Type 
Degree In-Degree Out-Degree Weighted 

Degree 
Weighted In-
Degree 

Weighted Out-
Degree 

Rank Value Rank Value Rank Value Rank Value Rank Value Rank Value 

T
op

 5
 D

eg
re

e 

528781 L 1 5093 1 5091 16781 2 2 127196 3 63601 2 63595 

720342 S 2 4007 2 4007 49104 0 6 48419 4 48419 49104 0 

919273 L 3 3489 3 3483 6779 6 1 188300 1 94153 1 94147 

242344 S 4 3235 4 3233 16911 2 9 44956 6 44951 14995 5 

257710 S 5 2902 5 2901 20045 1 14 30050 8 30046 16035 4 

T
op

 5
 In

-D
eg

re
e 

528781 L 1 5093 1 5091 16781 2 2 127196 3 63601 2 63595 

720342 S 2 4007 2 4007 49104 0 6 48419 4 48419 49104 0 

919273 L 3 3489 3 3483 6779 6 1 188300 1 94153 1 94147 

242344 S 4 3235 4 3233 16911 2 9 44956 6 44951 14995 5 

257710 S 5 2902 5 2901 20045 1 14 30050 8 30046 16035 4 

T
op

 5
 O

ut
-D

eg
re

e 

230129 M 10 1417 19 774 1 643 55 4301 46 2503 112 1798 

456485 M 24 583 34 316 2 267 241 1362 114 764 392 598 

357532 F 48 217 1342 10 3 207 78 3099 1945 38 43 3061 

355807 M 35 318 52 167 4 151 370 890 149 521 556 369 

145593 F 60 150 9323 2 5 148 215 1472 2575 29 162 1443 

T
op

 
5 

W
ei

gh
te

d 
  

D
eg

re
e 

919273 L 3 3489 3 3483 6779 6 1 188300 1 94153 1 94147 

528781 L 1 5093 1 5091 16781 2 2 127196 3 63601 2 63595 

860928 F 20 734 21 725 3444 9 3 83254 7 39662 3 43592 

490540 I 7 2172 7 2168 10228 4 4 68908 2 68904 16316 4 

217330 F 39 265 39 247 930 18 5 54681 9 27528 4 27153 

T
op

 
5 

W
ei

gh
te

d 
   

   
  

In
-D

eg
re

e 

919273 L 3 3489 3 3483 6779 6 1 188300 1 94153 1 94147 

490540 I 7 2172 7 2168 10228 4 4 68908 2 68904 16316 4 

528781 L 1 5093 1 5091 16781 2 2 127196 3 63601 2 63595 

720342 S 2 4007 2 4007 49104 0 6 48419 4 48419 49104 0 

582987 S 6 2590 6 2588 16542 2 8 45170 5 45153 6869 17 

T
op

 
5 

W
ei

gh
te

d 
   

  
O

ut
-D

eg
re

e 

919273 L 3 3489 3 3483 6779 6 1 188300 1 94153 1 94147 

528781 L 1 5093 1 5091 16781 2 2 127196 3 63601 2 63595 

860928 F 20 734 21 725 3444 9 3 83254 7 39662 3 43592 

217330 F 39 265 39 247 930 18 5 54681 9 27528 4 27153 

941088 F 52 187 50 170 1077 17 7 47053 10 23801 5 23252 
Note. The holding IDs are anonymized. L = logistics/distribution center; S = slaughterhouse, M = animal 
market; F = farm; I = incinerator. 
 
As can be derived from the results presented in the table, the different network properties 
have different meaning from a real-life control perspective. Degree shows the connections 
between different holdings. The stability of these connections have implications on risk, in 
line with human epidemiology (e.g. in case of sexually transmitted diseases spread). The 
holdings tending to be more loyal to their business partners have lower risks compared to 
those switching their partners over time (Valdano et al. 2015). 
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The considerable (one order of magnitude) differences between the in- and out-degree values 
and distributions hold important information as well: nodes with the highest in-degrees (and 
weighted in-degrees) are slaughterhouses. They don’t release animals so their out-degree is 
(virtually) 0; they are so-called sink vertices. In the case of hygiene, documentation, or 
traceability controls they are very important hubs to control and, in the case of some diseases, 
large slaughterhouses may be places where cross-contamination or cross-infection occurs. 
However, in case of other diseases they don’t represent a real high risk vertex and they 
should be excluded from analyses since this is an end-point to animals. This implies that, 
depending on the actual control objective and the characteristics of the causative agent, those 
nodes should be included or excluded from analysis on a case-by-case basis. 
 
Similarly, from a control perspective, it is important to observe nodes with low degree - high 
weighted degree (high trade activity with limited number of business partners), or high-
degree, relatively low weighted degrees (high number of business partners, but limited trade 
with each of them), usually being markets or trans-loading stations. 
 
As it is shown in the table, the maximum in-degree value of the network is 5091 and it 
belongs to a slaughterhouse; while the maximum out-degree value is only 643 (a market), 
confirming the phenomenon observed during degree distribution analysis, resulting in 
different degree exponents for in- and out-degrees. In contrary, the maximum values of the 
weighted in- and out-degrees are similar: 93,663 and 93,657, respectively (logistic center). 
 

 
Figure 6. Geographical representation of the Hungarian cattle holdings network.  
 
Note. The size of the nodes is influenced by degree, the color depends on the production type (red = livestock 
farm; blue = slaughterhouse; green = logistics/distribution center; orange = market; purple = incinerator). The 
color of the edges is influenced by source node, and the weight is limited to minimum 36 (at least one 
movement per month on average). 
 
Pay attention to the fact, that ‘export’ was part of the dataset as one single node (since there is 
no information about the exact recipient holding), and the connections contributed to the 
degree values of the nodes but it was excluded from the ranking exercise. If we knew about 
the actual destination of the exported cattle, the out-degree would increase (with unchanged 
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weighted out-degree). Similarly, the source of imported animals was present in the analysis 
as single nodes for each exporting country. Having information about the exact source 
holdings, the in-degree values would increase (with unchanged weighted in-degree). The 
export activity is far larger than import (207,094 and 55,240 movements in the three-year 
period, respectively), meaning if more precise data on holdings outside Hungary were present 
the difference between in- and out-degree distribution would decrease. The geo-layout of the 
Hungarian cattle holdings network is presented on Figure 6. 
 
Centrality Measures 
 
The most vulnerable points of a network are not necessarily their largest hubs, as discussed 
previously. To extract information on the nodes playing a central role in the network, 
different centrality measures were calculated: betweenness, closeness, authority and hub 
centralities were determined. The vertices of high betweenness centrality value are usually 
logistic centers, transloading places or major livestock farms. These nodes have an important 
role in epidemiological investigations because of the high risk of cross-infections. The top 
five nodes sorted according to different centrality values are presented in Table 2. 
 
Table 2. Top five nodes based on betweenness centrality, closeness centrality, authority and 
hub centrality (timeframe: 2012-2014). 

  ID Type 
Betweenness 
centrality 

Closeness 
centrality Authority Hub centrality 

Rank Value Rank Value Rank Value Rank Value 

T
op

 
5 

B
et

w
ee

nn
es

s 
ce

nt
ra

lit
y 

230129 M 1 124525786 1 4,353 3 0,00529509 3 0,00658296 

769670 F 2 87082032 21 4,971 8 0,00267829 8 0,00293686 

456485 M 3 74391523 2 4,481 9 0,00216586 9 0,00255726 

919273 L 4 44847391 1893 6,118 1 0,02380399 1 0,02744064 

447999 F 5 34191545 252 5,285 14 0,00121616 12 0,00143846 

T
op

 
5 

C
lo

se
ne

ss
 

ce
nt

ra
lit

y 

230129 M 1 124525786 1 4,353 3 0,00529509 3 0,00658296 

456485 M 3 74391523 2 4,481 9 0,00216586 9 0,00255726 

448931 F 40 3803558 3 4,640 957 0,00008199 638 0,00011987 

583058 F 39 3893053 4 4,761 3496 0,00003416 2908 0,00004995 

806192 F 87 2191809 5 4,817 3499 0,00003416 2911 0,00004995 

T
op

 5
 A

ut
ho

ri
ty

 

919273 L 4 44847391 1893 6,118 1 0,02380399 1 0,02744064 

490540 I 6 29500637 3143 6,530 2 0,01481942 2 0,01512382 

230129 M 1 124525786 1 4,353 3 0,00529509 3 0,00658296 

860928 F 44 3660243 2597 6,362 4 0,00494664 4 0,00569391 

431898 F 9 18940054 249 5,277 5 0,00335470 5 0,00379594 

T
op

 5
 H

ub
 c

en
tr

al
ity

  

919273 L 4 44847391 1893 6,118 1 0,02380399 1 0,02744064 

490540 I 6 29500637 3143 6,530 2 0,01481942 2 0,01512382 

230129 M 1 124525786 1 4,353 3 0,00529509 3 0,00658296 

860928 F 44 3660243 2597 6,362 4 0,00494664 4 0,00569391 

431898 F 9 18940054 249 5,277 5 0,00335470 5 0,00379594 
Note. The holding IDs are anonymized. L = logistics/distribution center; S = slaughterhouse, M = animal 
market; F = farm; I = incinerator. 
 
On the basis of the centrality measure other extremities–the “peripheral holdings” could be 
defined. These entities are not regular participants of the global cattle network. Their role is 
marginal in the network as a whole, but—taking into consideration their often low 
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technological level—it is important to include their activity because they can be sources of 
epidemiological problems. 
 
As described earlier, different centrality concepts capture different aspects of a central node. 
It is an important question from a food chain safety perspective which concept is the most 
useful from a risk analysis point of view. It is out of the scope of this paper to answer this 
question. However, with the help of the large amount of data it was possible to analyze the 
stochastic relationships between the centrality indicators. We decided to filter our analysis 
since, given all the nodes from the network, correlation figures are largely biased due to sink 
vertices, export (represented as one single node) and import (source countries as nodes) data 
and the holdings characterized by small throughput. Therefore, the nodes (and the 
corresponding edges) outside Hungary were excluded from the calculation of centrality 
values, then the nodes with <3 in-degree and out-degree (at least one in and out connection a 
year) were excluded from the correlation analysis as well as nodes with betweenness 
centrality value of 0 and closeness centrality value of 1 (nodes with a small number of 
connections, not being part of the giant component of the network). Then the correlation 
between the different centrality results was calculated (Table 3). To understand the 
relationship between different centrality indicators, we have applied regression analysis. This 
is an extremely important step because on this basis we will be able to understand whether 
there is a possibility to decrease the number of centrality indicators to judge the position of a 
given vertex of not. 
 
As seen from the results, there is a weak negative correlation between closeness and 
betweenness centralities, and a stronger correlation between betweenness centrality and hub 
centrality and authority. The strong relationship between hub and authority centrality can be 
explained by their similar role: in the opinion of Kleinberg (1999) hubs and authorities stand 
in a mutually reinforcing relationship. Valente et al. (2008) showed in their work a slight 
correlation between betweenness and closeness centrality, indicating that these measures are 
distinct, yet conceptually related. 
 
Table 3. Stochastic relationship between betweenness centrality, closeness centrality, authority 
and hub centrality in case of the Hungarian cattle holdings network. 
 Betweenness centrality Closeness centrality Authority 
Betweenness centrality 1 

  
 

Closeness centrality -0.1263 1 
 

 
Authority 0.4932 -0.0619 1  
Hub centrality 0.5054 -0.0634 0.9975  
Note. Time period: 2012–2014; directed network 
 
Dynamic Patterns 
 
The dataset offered a possibility to analyze the dynamic patterns of the network, to observe 
and draw conclusions on the time-dependent features which may have an influence on the 
planning of control activities. To that aim, monthly, annual and the whole dataset for three 
years were compared in this section. 
 
The simplest approach is to observe the number of animals moving per month. The results 
(Figure 7) indicated that the trade becomes very active in June–July with a peak of activity at 
the end of the year. The trend of increasing activity in the second half of the year seems to be 
stable. This should have an impact on the control time schedules, assigning increased control 
frequencies to those periods. 
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Figure 7. Monthly movement of the animals in the Hungarian cattle holdings network. 
 

 
Figure 8. Dynamic patterns of the Hungarian cattle holdings network.  
 

Note. a) Degree; b) In-Degree (blue) and Out-Degree (red); c) Weighted Degree; d) Weighted In-Degree (blue) 
and Weighted Out-Degree (red) distributions presented in 3-year, annual and monthly breakdowns. 
 
During analysis, the changes in the activity of the holdings were recorded along with the 
analysis of the dynamic patterns of the entire network properties (Figure 8). 
 
It can be derived from the results that, apart from small differences, network characteristics 
are quite stable over time, allowing for predictions at the overall network level. We selected 
the top five nodes on the betweenness centrality rank list and plotted the monthly 
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betweenness centrality values to see when the nodes played a central role in the network over 
the three year period. The results (Figure 9) show a very volatile nature (differences of many 
orders of magnitude between months) of the holdings in relation to betweenness centrality 
values. It also shows that the analysis of the dynamic patterns is valuable especially in case of 
single holding analysis: performing time-dependent assessments, the results could be used for 
effective targeting of control, or prediction purposes as well. 
 

 
Figure 9. Changes in betweenness centrality values of the top five holdings of the Hungarian 
cattle holdings network during a thirty-six- month period. 
 
Application of the Results in Practice 
 
The results presented above all contribute to network analysis based, risk based control plans. 
The outputs of the analysis served as valuable input information in the planning process of 
official control plans. As an output, 100 highest risk cattle holdings were selected for food 
chain safety control based on the basic network properties, as well as on centrality measures. 
Those holdings are controlled for biosecurity measures, hygiene, animal welfare rules, safety 
assurance systems, documentation, etc. Furthermore, 100 highest risk holdings were selected 
for animal identification control. Those holdings are controlled for the identification and 
traceability rules. 
 
The analyses performed provide information on the source and routes of possible infections 
so that preventive and control measures can be applied, increasing preparedness of the food 
chain stakeholders. In case of an outbreak, the mapped network makes a rapid traceability 
and epidemic spreading prediction possible, allowing for effective risk management.  
 
Implications 
 
Globalization, the data explosion, fast changing trade routes and food technologies are the 
important drivers which inspire us to develop new analysis and assessment methods in the 
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field of food chain safety. There is a strong need for an interdisciplinary approach to monitor, 
understand, and control the trade-flow in the food chain.  
 
The data on movements of cattle are increasingly becoming available thanks to identification 
and tracing systems put in place in the European Union. By using the approaches and 
techniques of network science it is possible to analyze the dynamic system of cattle 
movements, going beyond static and simple approximations (Bajardi et al. 2011; Natale et al. 
2009). 
 
During the analysis of the Hungarian cattle holdings network the basic structure of the 
network was revealed, showing scale-free properties, thus having serious implications from a 
food chain safety control perspective. This network has small world properties meaning that – 
because of the hubs and high centrality nodes—there is a small distance between any random 
holdings, potentially resulting in a rapid spread of epidemic as the spread of a pathogen on a 
scale-free network is instantaneous (Barabási 2015). This should be taken into account during 
the preventative measures (including e.g. vaccination strategies) at a business level as well as 
at an official control planning level. Furthermore, this phenomenon has very important 
implications for the forecasting and risk or crisis management in case of an actual outbreak, 
showing the possible advantages of using network spreading models in conjunction with 
traditional epidemiological modelling (Pastor-Satorras and Vespignani 2001). 
 
The other consequence of having scale-free properties is the vulnerability to intentional 
attacks against the hubs or central nodes, showing the growing need for the control and 
preparedness of that critical infrastructure. It is important to emphasize that intentional 
attacks on the network behave differently and need a slightly different analytical and risk 
management approach compared to unintentional events. Epidemics follow the rules set by 
the characteristics of the infectious agents, while in case of intentional attacks, different 
spreading models should be used, based on socio-psychological and economic analysis. 
 
On this basis, suggestions have been formulated for the food chain safety authority 
determining which farms should be the focus of their control activity. The list of the highest 
risk holdings obtained by network analysis is used directly by risk managers when outlining 
their annual control plans. Should any epidemiological problem occur, the easily updatable 
database on network characteristics offers essential input for further optimization of the 
control strategy. The tool used is suitable for a rapid assessment of a huge and complex 
system within minutes after data cleaning. It is possible to give a very informative graphical 
representation of the cattle holding network, making possible to easily choose control or audit 
targets. During the analysis of the dynamic properties of the network we revealed further 
possibilities to explore, hence making network based epidemiological simulations the next 
item on our research agenda. 
 
As it could be seen from the difference of the ‘real life’ meaning of various network 
properties, and considering the implications of those, critical thinking during the application 
of the results is essential. Substantial knowledge of the food chain safety science is needed 
for the correct interpretation of the network analysis results and advanced skills in 
computational science are important in extracting valuable information from the underlying 
network data. This inter- and multidisciplinary field of science calls for such experts and the 
need for capacity building. 
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In addition, the software tools available are not by themselves suitable alone network-based 
food chain safety analyses. The data cleaning, transformation and enrichment steps needed to 
obtain a dynamic dataset suitable for network-analysis (as demanded by the software used) 
require many steps and, after the usual network analysis, many calculations are done over 
using other analysis tools. This calls for dedicated software development in the future, to 
decrease the time needed between receiving raw data and delivering pertinent information to 
decision makers. In epidemic situations, time is of utmost importance. 
 
An important aim of this ongoing research is to share the methodology and algorithms with 
the network science and food chain safety community, in order to enhance the capacity 
building process and to improve the cross-compatibility of the methods. This makes it 
possible to expand simulation exercises and risk based planning processes across borders, as 
real world situations don’t respect borders either. For that reason, the anonymized raw data, 
the data cleaning process, the analysis algorithms and the Gephi software settings used are 
published on the website of Hungarian National Food Chain Safety Authority (NÉBIH).1 
Furthermore, for the sake of better illustration, particularly for educational purposes, the key 
issues of the article (graph-dynamics) are illustrated in a Prezi, based on a series of Gephi 
files on the same site. 
 
This study opens the road to future work in several directions. This work contributes to 1) 
determining the most vulnerable parts of a cattle holding network; 2) increasing the 
effectiveness of the control of the cattle-flow; 3) revealing the interdependencies; 4) helping 
to work out an optimized strategy for the inspection of herds; 5) increasing the preparedness 
against outbreaks and intentional attacks; 6) enhancing epidemiological modelling simulations; 7) 
providing information on the source of possible infections so that preventive and control 
measures can be applied; and finally 8) serving the food chain safety and network science 
community with analyzable data and helpful descriptions of the methodology to enhance 
cross-border co-operation. 
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