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Abstract 
 
The objective of this research is to investigate food product innovation in the context 
of the first-mover strategy among food manufacturers within agrifood supply 
chains.  The emphasis of the analysis is on developing a useful metric for tracking 
new product development in the context of first-mover strategy.  Entropy is 
introduced as a novel and useful means of examining first-mover strategy and new 
product development (NPD) in general.  Understanding the complexities of the first-
mover strategy and tracking NPD with entropy metrics holds promise for enhancing 
the analysis of agrifood supply chains and assisting firms in deciphering broad 
strategies of their rivals. 
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Innovation in Food Products 
 
The agrifood sector traditionally is regarded as a low-tech industry.  Food 
manufacturing is characterised by low intensity of research and development 
(R&D), compared to other manufacturing firms, which is reflected by relatively low 
R&D investment per dollar of sales (Grunert et al).  Compared to the 
pharmaceuticals sector or the information technology sector, food manufacturing 
industries consistently exhibit lower R&D spending (Morgan et al), yet there is 
enhanced interest in product innovations in this sector.  Currently, numerous 
applications of modern biotechnology focus on engineering input traits in the 
development of arable crops.  Designer genes in arable crops already are important 
on the business-to-business level.  However, agrifood firms increasingly are alert to 
the potential for differentiating bulk food products by adding useful functionalities 
relevant to specialized business-to-consumer markets (Bröring,  Cloutier, and 
Leker).  Hence, food product innovation through new product development is an 
important economic driver of the dynamics within agrifood chains.  R&D 
expenditures lead to innovation by food manufacturers and may be driven by a 
differentiation strategy.  A consequence of this is that intangible resources of the 
firm, such as intellectual property, are more likely to lead to a sustainable 
competitive advantage over rivals than tangible assets.   
 
A successful differentiation strategy through R&D expenditures results in 
subsequent first-mover decisions.  That is, if a first-mover opportunity arises for the 
food manufacturer as a result of their R&D then it confers the right, but not an 
obligation, to develop a product (and/or perhaps even an entire market) within a 
future time period.  To obtain this right for management the firm paid a premium 
in the form of R&D expenditures committed during prior time periods. 
 
The objective of this research is to investigate food product innovation in the context 
of the first-mover strategy among food manufacturers within agrifood supply 
chains.  The emphasis of the analysis is on developing a useful metric for tracking 
new product development in the context of first-mover strategy.  Entropy is 
introduced as a novel and useful means of examining first-mover strategy and new 
product development (NPD) in general.  Understanding the complexities of the first-
mover strategy and tracking NPD with entropy metrics holds promise for enhancing 
the analysis of agrifood supply chains and assisting firms in deciphering first-mover 
strategies of their rivals.  
 
There is modest development of first-mover advantages compared to second-movers 
based on economic theory (Lieberman and Montgomery; Lieberman).  Some 
analysts have examined first-mover with regard to barriers to entry (Briggeman, et 
al).  There also is some development of diffusion and sustainable strategies with 
regard to food product innovation (Bröring; Shanahan, Sporleder, and Hooker).  
Integrating these concepts with the first-mover theory, particularly with a focus on 
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tracking new food product innovation using entropy metrics, is the unique 
contribution of this research. 
 
Firm Strategy by Markets and Products 
 
A general view of firm strategy may be based on the combination of products and 
markets (Ansoff).  The managerial strategy, in a simplified way, becomes evident 
when considering the products the firm either currently has or may develop 
combined with the current markets for the products or markets the firm may 
develop for its products, Figure 1.  For example, when the relevant circumstance is 
to manage current or existing products in current or existing markets, the general 
strategy is to increase market share.  Thus, tactics employed are devoted to 
enhancing market share for these products. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Firm Strategy Matrix across Market and Product Alternatives 
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Another circumstance may be the managerial challenge of marketing existing 
products in new markets.  For example, a nutraceutical drink initially marketed to 
health care professionals in hospitals and nursing homes may be rolled out to the 
general public and marketed through retail grocery stores.  Providing customer 
information on the product’s benefits to this market segment is clearly different 
compared with the existing market.  The managerial challenge here is to deploy 
strategies that will enhance sales of the product in this new product space. 
 
In NPD, strategies also differ depending on whether the market is established or 
new.  In the cell denoting established markets of the strategy matrix (Figure 1), the 
strategy is to proliferate products by deploying specific strategies such as line 
extensions or re-positioning products within existing markets.  Introducing a new 
product in a new market is the most uncertain challenge. Here the predominant 
strategy is diversification.  New products aimed at new markets diversify the 
portfolio of the firm (Ansoff; Madique and Zirger). 
 
First-mover Strategy 
 
First-mover firms in a market are thought to have an initial advantage of high price 
while second-mover firms have the advantage of lower costs (Montgomery and 
Lieberman).  Pioneer firms face falling prices from firms that enter the market with 
imitations.  Pioneer firms make their first-mover advantage sustainable through 
developing superior resources and capabilities compared to second-movers 
(Briggeman, Gunderson, and Detre).  
 
Pioneer firms are first-movers typically thought to gain advantages over rivals from 
being first.  These first-mover advantages may include strong image and reputation, 
brand loyalty, technological leadership, and being in an advantageous position 
relative to the ‘learning curve’ involved in managing a specific product or process 
innovation.  Lieberman and Montgomery argue that there are three primary 
advantages that may accrue to pioneer firms: the preemption of rivals, the 
imposition of switching costs on buyers, and the benefit that accrues from being 
seen by customers as a technological leader compared to rival firms.  Second-mover 
or follower firms have the advantage of lower costs through less expensive imitation 
of first-mover products or processes and the resolution of market or technological 
uncertainties faced by first-movers.  In the aggregate, market pioneers deploy 
innovative products or processes with high initial costs and risks, but yield high 
potential returns.  This also implies that second-movers or followers experience 
lower costs because imitation is less expensive than innovation.   
 
Other potential advantages to second-movers include the ability of followers to free-
ride on the first-mover’s pioneering costs (such as the expense of gaining regulatory 
approvals, informing potential buyers of the innovation’s advantages, and generally 
developing the infrastructure necessary to support commercializing the innovation).  
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Another factor may be the ability of followers to capitalize on first-mover mistakes 
and operate with less market or technological uncertainty when compared to the 
first-mover (Kerin, Varadarajan, and Peterson). 
 
Capture and sustainability of first-mover advantages are related to complementary 
assets (Teece, 1986).  Commercialization of innovation requires linking with 
complementary assets such as marketing expertise, brands, and logistics and 
supply chain networks, all in support of the innovation.  In general, a firm’s 
competitive advantage is a function of the unique organizational skills that 
determine how it combines and orchestrates assets over time (Teece, 1992).  The 
extent to which a new product innovation can be mastered by existing 
complementary assets depends on the degree of innovativeness.  Following Veryzer, 
product innovations can be distinguished along the dimensions “technological 
capabilities” and “market capabilities.”  Depending on the degree to which an 
innovation requires new capabilities, it may create conflicts within the existing 
firm. This view can be extended to include the capability requirements of an 
innovation on the customer side or even along the entire value chain (Bröring, 
Leker, and Rühmer).  The more disruptive an innovation is from a customer’s view, 
the more assets need to be changed; hence, the less likely is the adoption of that 
innovation.  This is because the customer may not want to build complementary 
assets to make adopting the innovation feasible (in case of B2B markets), or the 
customer may not want to invest in extra search and information costs (in case of 
B2C markets).  Sustainability may depend on the nature of the idiosyncratic 
investments induced by the innovation as well as the aggregate portfolio of tangible 
and intangible assets possessed by the first-mover firm (Teece, Pisano, and Shuen).  
The factors influencing capture and sustainability of economic rents not only 
include complementary assets required to support commercialization but also the 
nature of the technology (the complexity of the technology) and the legal protections 
that may be available for insulating the technology from second-movers through 
patents, copyrights, or trademarks.            
 
The strength of appropriability regimes also may be a factor in determining the 
sustainability of economic rents to innovators (López and Roberts).  Appropriability 
refers to the ability of various stakeholders to retain the economic rents generated 
from the commercialization of an innovation.  Weak appropriability regimes imply 
that stakeholders will have difficulty in capturing sustainable economic rents from 
their innovation.  Economic rents from commercializing an innovation are 
potentially shared among the innovator, customers buying the innovation, suppliers 
to the innovation, and second-movers or followers (Teece, 1986).  Commercializing 
innovation by firms that lack complementary assets, or in the event that only 
‘generic’ general-purpose assets are required, leads to weak appropriability.   
 
Food products are in the experience goods category.  Empirical evidence indicates 
that first-mover firms in experience goods tend to shape consumer tastes and 
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preferences in favor of the pioneering brand (Robinson, et al).  Such preferences 
often are sustainable for the pioneering product.  First-mover strategy is a common 
dilemma for managers and has special importance when the product is in the 
experience goods category.  A priori, weak appropriability regimes are likely to 
characterize new product innovation by food manufacturers partly because they are 
manufacturing experience goods.  The exception to this generalization about weak 
appropriability regimes may be when food manufacturers already possess one or 
more category-dominant brands.  If the new product innovation is then introduced 
as a brand extension, strong appropriability may better characterize the situation. 
 
In the context of the product/market strategy matrix, Figure 1, the cells that 
represent first-mover situations include all but the existing product-existing market 
cell.  That is, first-mover strategy may be deployed by firms either through 
introducing new products or developing new markets.  For example, a food 
manufacturer that develops a new organic product after developing a conventional 
product in the same category would be characterized within the product 
proliferation cell of the matrix.  The new product into new markets cell is the most 
uncertain and potentially the highest relative product launch cost among the four 
cells. 
 
Entropy Metrics for Tracking Food Product Innovation    
 
Entropy metrics are based on probability distributions and are appropriate for use 
in analyzing phenomena whenever the target of interest is a heterogeneous 
population that can be grouped into meaningful categories (Theil).  Entropy metrics 
are employed in a wide variety of calculations in both social and physical sciences.  
For example, entropy has been used as a measure of firm diversification in the 
management literature (Hoskisson et al).  
 
The typical analytic measure employed for assessing first-mover is market share.  
The entropy metric has useful features, compared to simple market shares, because 
of the disaggregation properties of the metric.  Specifically, total entropy can be 
disaggregated into between-set and within-set entropy measures.  This is a 
convenient feature when applied to food products because data are available for 
several levels of aggregation, such as product line and more aggregated 
classifications such as food categories, industry sectors, and even national 
boundaries.  To illustrate, suppose the analytic target of interest is plant sterols (a 
cholesterol-lowering ingredient).  New product development may include plant 
sterols in product lines such as rye bread, yogurt, and margarine.  These product 
lines are typically aggregated into broader product categories such as bakery and 
dairy.  The power of entropy is the between-set and within-set disaggregation.  For 
this illustration, the between-set entropy would be bakery compared to dairy, while 
the within-set entropy would be yogurt compared with margarine.  The entropy 
metrics thus coincide with normal and meaningful units of analysis and 
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consequently provide more information-rich measures (the appendix to this article 
provides a discussion of, and formal definition for, between-set and within-set 
entropy).  A strategist attempting to analyze new product development in sterols 
would be keenly interested in how rapid and pervasive NPD is between these sets 
as well as within these sets.  Further, the strategist might calculate the decomposed 
entropy metrics at time t and t+1 to provide insight into the dynamics of sterol 
ingredient NPD.  If one level of aggregation is the firm level, then between-set and 
within-set entropy metrics also could help monitor sterol ingredient NPD by firm 
and product line.           
 
To illustrate the utility of entropy in tracking NPD, the trends in new organic food 
product development are tracked here to assess which innovations are using 
particular combinations of promotional claims as expressed on product labels.  Each 
food category is a mutually-exclusive element of a particular food industry sector. 
 
Tracking Organic NPD 
 
Organic adoption by food processors (process innovation adoption) can be observed 
by tracking new processed food product lines released into a given market and 
determining which product lines are using an organic promotional claim (as 
determined by the informational content of product labels).  Use of an organic 
promotional claim on a new product line implies that the food manufacturer’s 
product/brand manager made a decision concerning whether or not to adopt organic 
practices. 
 
The product/brand manager’s decision to adopt organic practices is a function of 
factors that maximize the expected benefits from adoption and minimize anticipated 
costs of adoption. Expectations (the likelihood of earning a given target return) and 
anticipations (the cost of process innovation adoption given the earning’s 
expectation) are not directly controllable by the adopter. They are exogenous to the 
food manufacturer.  Expectations and anticipations can be influenced by the 
expected consumer demand for product innovation (thus, the demand for a process 
innovation is derived from the demand for the product innovation), the current and 
future actions of potential competitors and the actions of suppliers of the process 
innovation’s inputs. Regulation also influences expectations and anticipations. 
 
For example, the National Organic Program (NOP) was initiated in 2002 by the 
U.S. Department of Agriculture (USDA) with the intent of defining what it means 
to be organic and to establish a third-party voluntary quality assurance certification 
standard nationally.  The goal of NOP is to substantiate and standardize organic 
labeling to provide all economic agents in the organic market an assurance of 
product quality.  The NOP also substantiates the certification of multi-ingredient 
processed goods using a ranked four-tiered labeling system that encodes the 
relevant product by its level of content of organic ingredients, which include:  

© 2008 International Food and Agribusiness Management Association (IAMA). All rights reserved. 
 

145



Sporleder et al. / International Food and Agribusiness Management Review Volume 11, Issue 3, 2008 
 

• 100% Organic 
• Organic (contains at least 95% organic) 
• Made with organic ingredients (contains at least 70% organic)  
• Some organic ingredients (contains less than 70%) 

 
Only the first two levels can use the official USDA organic seal on the front of the 
label. Regulation forbids the use of the word ‘organic’ on the front panel of products 
that only qualify for the last level of NOP certification.  This may effectively nullify 
the potential adopter’s expected benefits from adopting organic production 
practices.  The benefit of adopting NOP requirements and qualifying for the 
nationally-recognized seal, for producers able to bear the initial investment costs, is 
the addition of a government-endorsed barrier to entry by the adopter’s current and 
future potential competition and a substantiation of the quality of the adopter’s 
product line.  For the manufacturer, this benefit strengthens what otherwise might 
be characterized as a weak appropriability regime.  
 
It is expected that consumers are willing to pay a higher price for new organic 
product lines bearing the USDA seal, yet it is uncertain as to whether consumers 
perceive a difference between 100% Organic and Organic (or Made with organic 
ingredients and Some Organic Ingredients) (Hooker et al).  It also is expected that 
the anticipated investment costs of adopting organic production practices is 
positively related to the level of organic ingredient content in the adopter’s new 
product line.  These expectations suggest that since the likelihood of earning a given 
target return is lower at the 100% Organic level (due to uncertainty) and the 
expected cost at the 100% Organic level is relatively the highest among the set of 
organic levels, an anticipated evolution of adoption would be an increasing share of 
the organic product innovations released into the market  claiming Organic and/or 
only exert enough effort to achieve the 95% organic content threshold  to qualify for 
the differentiating seal.   
 
Uncertainty decreases over time due to the learning effects typical in innovation 
diffusion systems and the accumulating nature of information within these systems 
(Shanahan, Hooker, and Sporleder).  Specifically, expectations about potential net 
earnings from adoption increase due to continued information gathering about the 
extent of the process innovation’s market success.  Thus, it is expected that the 
share of the organic product innovations released into the market claiming 100% 
Organic will increase over time, yet at a lower rate of adoption relative to the 
Organic level.  The rates of adoption among the lower two levels are expected to 
have decreased over time, as learning of the disadvantages of these marketing 
strategies’ becomes increasingly apparent.  Thus, an increasing share of the 
adoptions will bear the USDA organic seal.  
 
The rate of process adoption is defined as the sum of all process innovation 
adoptions by all product line managers in all specified product categories at a 
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particular point in time.  Useful product category specifications include brand, 
company, industry of origin, industry sector of origin, and food-type category (e.g. 
milk, cheese, yogurt, bread products, and cola).  Product lines can also be 
aggregated into geo-space groupings, such as groupings by the origin region of 
production or distribution and market regions (where the product line is primarily 
sold).  For the purposes of this study, product lines are aggregated up to food-type 
categories and then further aggregated up into an industry sector, where each food 
category is an exclusive element of the industry sector.  For the purposes of this 
research, similar food manufacturers are aggregated into food-type categories 
(which roughly approximate the firm’s industry).  
 
Relative adoption rate variance across food categories and industry sectors is a 
function of the characteristics of the adopter set and the external environment.  It 
appears likely that expected benefits and anticipated costs from the adoption of a 
given process innovation will vary across food manufacturers and food sectors.  
Further, adoption may be influenced by market structure, consumer demand, and 
the power of suppliers.  In turn, there is no a priori reason to assume that rates of 
adoption across food categories will be the same.  Certain food categories will be 
more innovative relative to others.  However, due to inter- and intra-industry 
learning, uncertainty tied to the expected net benefits from adoption of organic 
practices will decrease over time and, given that the process innovation proves a 
sustainable advantage, adoption rates across food categories and industry sectors 
should converge over time.  Thus, it is expected that the relative variance in process 
innovation adoption rates across food categories and industry sectors will decrease 
over time. 
 
Entropy Metrics Applied to Organic NPD 
 
Designing entropy metrics to analyze food innovation, such as organic NPD, 
facilitates a more sophisticated framework that permits categorical decomposition; 
a metric unavailable in simpler statistical comparisons.  Entropy metrics facilitate 
an n-dimensional distribution of product innovations over a defined space at 
particular point in time.  These metrics can capture spatial dispersion of product 
characteristics by indicating product variety and product category specialization 
simultaneously.  This is a powerful and novel trait for any metric to possess.  More 
detail on the specific methods of entropy calculation is provided in an appendix to 
this manuscript.  
 
Using entropy metrics enhances the ability to indicate the extent of n-dimensional 
variety at particular moments of time and allows for categorical decomposition 
analysis.  There have been many uses of entropy metrics in industrial organization 
and technical change (innovation) investigations (Sporleder, Franken). Entropy 
statistics are based on the properties of any probability distribution and are 
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suitable for use in studying phenomena at any population level of heterogeneous 
entities that are naturally grouped into categories (Franken). 
 
Suppose the following events are observed: 
Xm = The event that a product line innovation is organic at organic level m where  
m = 
 

• 1 if 100% Organic 
• 2 if Organic 
• 3 if Made with organic ingredients, and    
• 4 if Some organic ingredients  

 
Each Xm can be aggregated into mutually exclusive sets of related event variants; Wk, is 
the event that a product line innovation is organic at organic level k where k = 1 if m < 2 
and k = 2 if m > 2. When k = 1, the product line is able to bear the USDA organic seal.  
The probability of Xm is 
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where Yie is the event that a product line innovation is organic and is of food type n 
where N = 47, the number of food type categories n.  The probability of Yn is  
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The probability that a given combination of event variants occurs in a particular 
moment in time is calculated by taking the ratio of the total number of occurrences of 
the event relative to the total number of adoptions at a defined time.  Thus, the 
probability an organic adoption is Xm and Yn is  )( nmmn YXPP ∩= , and the probability an 
organic adoption is Wk and Yn is ∑

∈

∩=∩=
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In this study, conditional entropy metrics are calculated which measure entropy in 
one dimension given the occurrence of a particular variant of another dimension.  
For example, the following conditional entropies are calculated for this particular 
study: 

 (4) Conditional Entropy in X given Yn:   ∑
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Average conditional entropy is equal to the weighted average of conditional 
entropies. The average conditional entropies used in this particular study are: 
 

 (8) Average conditional entropy in X given Y:     ∑
=

=
N

n
nn YXHPYXH

1
)|(*)|(

 (9) Average conditional entropy in W given Y:    ∑
=

=
N

n
nn YWHPYWH

1
)|(*)|(

As stated above, absolute rates of adoption across organic content levels, food 
categories and industry sectors will vary inherently because the expected benefits 
and the anticipated costs of adoption of a given process innovation and the adopter’s 
external environment will vary.  As a result, absolute entropy measures over time 
also will vary but provide sparse additional information pertaining to changes in 
adoption rates.  To control for changes in absolute adoption rates over time and to 
observe only changes in adoption rate variance across event variants, relative 
entropy metrics are needed (Sporleder).  Relative entropy can be calculated from 
any absolute entropy measure as follows: 
 

 (10) 
t

t
t N

HR
2log

(...)(...) = ,  

 
where  is the maximum possible absolute entropy in time t.  Decreasing 
relative entropy over time implies that adoption rates are increasing in variance 
across event variants and increasing relative entropy implies that adoptions rates 
are decreasing in variance across event variants.  Using equation 10, relative 
entropy metrics per time period are derived so as to empirically test relative 
adoption rates across a specific dimension are behaving in accord with a priori 
reasoning.  Relative entropy may be calculated for any particular dimension, set of 
dimensions, or across a particular dimension given the occurrence of a particular 
variant of another event dimension.  A linear functional form is specified for each 
proposed relationship between relative entropy and time unless otherwise noted.  

tN2log
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Entropy Metric Results for Organic NPD 
 
Data 
 
The dynamic Mintel/GNPD database (www.gnpd.com) lists new food and consumer 
product information, including label pictures for goods on sale in 49 countries.  
These data consist of a total global population of over 320,000 innovations since the 
year 2000 and a total U.S. population of over 57,000 innovations as of July 2006.  A 
simple search function can separate products using certain quality claims with 
results including: product name, description, time of product release, variants in 
product characteristics (flavors, sizes, etc.), ingredients and nutritional information, 
food categories and subcategories (which closely correlate to food manufacturing 
industries), distribution channels for the new product, and price in local currency 
and Euros. There are 1,761 new U.S. organic food products within the 47 chosen 
food categories.  These data are used to empirically estimate entropy metrics for 
organic food products in the United States. Regressions empirically test selected 
hypotheses regarding innovation, the role of innovation propagators, and first-
mover strategy.  Table 1 reports the cumulative number of organic adoptions per 
food category and by level of organic content during all time periods. 
 
Table 1. Cumulative Number of Organic Adoptions per Food Category and by Level 
of Organic Content; All Time Periods 

Food Category 
100% 
Organic 

Organic 
>95% 

Made w/ 
Organic  
95% to 70%  

Some 
Organic 
<70% 

Total Organic 
Adoptions per 
Food Category R(X|Yn) 

Baking Ingredients &  
Mixes 0 24 9 12 45 0.265 
Bread &  Bread 
Products 0 20 20 24 64 0.263 
Butter &  Yellow 
Fats 0 4 1 1 6 0.484 
Cakes, Pastries &  
Sweet Goods 0 5 6 10 21 0.346 

Cheese 0 15 13 9 37 0.298 

Chilled Desserts 0 2 0 1 3 0.579 
Chocolate 
Confectionery 2 20 20 12 54 0.299 

Coffee 5 13 10 32 60 0.286 

Cold Cereals 0 56 17 5 78 0.171 

Cooking Sauces 0 16 11 9 36 0.298 

Cream & Creamers 0 2 1 0 3 0.579 
Dressings, Vinegar &  
Mayonnaise 0 22 24 17 63 0.263 

Dry Soup 0 0 2 1 3 0.579 
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Table 1 Continued.  

Food Category 
100% 
Organic 

Organic 
>95% 

Made w/ 
Organic 
95% to 70%  

Some 
Organic 
<70% 

Total Organic 
Adoptions per 
Food Category R(X|Yn) 

Eggs &  Egg Products 1 7 3 7 18 0.413 
Frozen Novelties 
Impulse Ice Cream 0 4 2 1 7 0.491 

Fruit 6 22 5 4 37 0.309 

Fruit Snacks 1 7 2 3 13 0.451 

Hot Cereals 0 11 0 1 12 0.115 
Malt &  Other Hot 
Beverages 0 3 2 6 11 0.415 

Meat Products 0 8 2 6 16 0.351 

Meat Substitutes 0 11 14 10 35 0.306 

Milk 0 29 19 8 56 0.245 

Nuts 0 2 3 2 7 0.554 

Oils 3 11 14 12 40 0.346 

Pasta 2 29 28 13 72 0.267 

Pasta Sauces 0 16 7 3 26 0.277 

Pickled Condiments 0 0 3 4 7 0.351 

Potato Products 0 4 0 1 5 0.311 

Rice 1 12 6 4 23 0.361 

RTD Iced Tea 0 3 0 13 16 0.174 

RTD Juices &  Juice 
Drinks 4 63 15 19 101 0.221 
Savory 
Biscuits/Crackers 0 16 11 20 47 0.278 

Savory Spreads 0 13 3 9 25 0.299 

Savory/Salty Snacks 1 26 32 21 80 0.260 

Seasonings 2 7 10 10 29 0.375 
Snack/Cereal/ 
Energy Bars 0 31 15 21 67 0.251 

Snack Mixes 0 8 3 4 15 0.373 
Stuffing, Polenta &  
Other Side Dishes 1 7 9 2 19 0.378 

Sugar Confectionery 1 11 2 6 20 0.357 
Sweet 
Biscuits/Cookies 0 22 15 23 60 0.264 

Sweet Spreads 1 32 22 21 76 0.262 

Table Sauces 0 30 19 7 56 0.239 
Take Home  
Ice Cream 1 3 14 4 22 0.327 
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Table 1 Continued.   

Food Category 
100% 
Organic 

Organic 
>95% 

Made w/ 
Organic  
95% to7 0%  

Some 
Organic, 
<70% 

Total Organic 
Adoptions per 
Food Category R(X|Yn) 

Tea 3 22 35 31 91 0.264 

Vegetables 6 46 26 4 82 0.233 

Wet Soup 1 33 17 4 55 0.233 
Yogurt &  Probiotic 
Drinks 0 14 22 6 42 0.263 
Total  
Organic Adoptions 
per Organic Level 42 762 514 443 1761   

 
 
Temporal Trends in Relative Average Conditional Entropy 
 
Relative average conditional entropies, R(X|Y) and R(W|Y), are expected to 
initially increase over time, reach a maximum value at a particular time, and then 
decrease thereafter.  This reflects the organic food industry’s temporal shift away 
from non-seal qualifying process adoptions and toward NOP seal qualifying 
adoptions.  Prior to 2002 organic product innovations were not certified because the 
process innovation was not yet introduced.  After 2002, more product innovations 
will display the seal, reflecting product/brand managers’ increasingly certain 
expectations of rising benefits and lower costs of using the differentiating seal.  The 
expectation is that there will an increasing number of new organic processed foods 
eligible to use the NOP seal over time, evident in an increasing clustering of 
adoptions at the 95% organic content level and a de-clustering of non-seal adoptions 
over time.  The expected temporal trend in U.S. organic adoption among food 
products can be depicted graphically, Figure 2. 
 
Given the above relative average conditional entropies hold, the relative average 
conditional entropy in X given Y and the relative average conditional entropy in W 
given Y over time will reflect the temporal shift away from lower organic 
qualification levels and toward seal-certified organic process adoptions, independent 
of the initial food category.  Thus, the relative average entropy in X given Y and the 
relative average entropy in W given Y initially will be relatively low-- reflecting that 
most organic adoptions will not have the seal.  Then entropy will increase, as early 
adopters are just beginning to learn of the certification process, and will reach a 
local maximum entropy at some point within the observed time period.  Then 
entropy decreases thereafter as information pertaining to organic seal compliance 
has effectively diffused through the industry and increases a given organic adopter’s 
ease of seal qualification.  
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1. 100% Organic 2. >95% Organic 3. >70% Organic 4. <70% Organic 
Xm 

time 

Time t  Time T  

Time T - v  

Low Entropy 

High Entropy 

Low Entropy 

 

Cumulative Share 
of Adoptions 

 

Figure 2. Shift in Cumulative Share of Organic Adopters from Non-Seal  
Qualified Organic Adoptions to Seal Qualified Organic Adoptions over Time 
 
 
Below are the specifications used to explore the correlation between the relative 
average conditional entropy in X given Y and the relative average conditional 
entropy in W given Y and time, respectively. 
 
 (11)  2

|2|1| **)|( ttYXR YXYXYXt ββα ++=
 
 (12)  2

|2|1| **)|( ttYWR YWYWYWt ββα ++=
 
where YX |1β  and YW |1β  > 0 ,  YX |2β  and YW |2β  < 0 and each time period is the number 
of quarters since the inception of the National Organic Program (15 quarters as of 
May 2006). 
 
Results of the linear models, estimating the temporal relationship of each relative 
conditional entropy metric is reported in Table 2.  The coefficients of determination 
(adj. R2) of the relative average conditional entropy in X given Y model is 0.24 and 
the relative average conditional entropy in W given Y is 0.23.  The reported F  
statistics for the relative average conditional entropy in X given Y is 3.20 and the 
relative average conditional entropy in W given Y is 3.08.  The coefficients 
describing the change in the relative average conditional entropy R(X|Y) and 
R(W|Y) given a change in time (0.0075 and 0.0061, respectively) and the relative 

© 2008 International Food and Agribusiness Management Association (IAMA). All rights reserved. 
 

153



Sporleder et al. / International Food and Agribusiness Management Review Volume 11, Issue 3, 2008 
 

Table 2. Results of the Entropy Temporal Trends 
Liner Model α β1 t-stat β2 t Stat F Stat Adj. R2 
R(X|Y) = f(t, t2) 0.1171 0.0075 1.70 -0.0006 -2.09 0.08 0.24 
R(W|Y)= f(t, t2) 0.0621 0.0061 1.95 -0.0003 -1.54 3.08 0.23 
E(X) = f(t) 3.0927 -0.0407 -5.72   32.69 0.69 
E(W)= f(t) 1.7991 -0.0321 -7.13   50.83 0.78 
R(X|Yn) = f(CUMAn*) 0.4233 -0.0026 -5.26   34.06 0.42 
R(Y|W1) = f(t) 0.1054 0.0233 7.20   51.85 0.78 
R(Y|W2) = f(t) 0.5608 -0.0247 -7.43   55.28 0.79 

* CUMAn = Cumulative Number of Adopters in Food Category i 
 
 
average conditional entropy R(X|Y) and R(W|Y) given a change in time squared (-
0.0006 and -0.0003, respectively) are found not statistically different from zero at 
the 95% level.  These results provide modest evidence that the relative average 
conditional entropy in X given Y and W given Y did shift along the organic level 
dimension in the expected direction, away from non-NOP seal qualified organic 
adoptions and toward seal-qualified adoptions.  However, endogenous factors 
influence the adoption decision, as evident in the degree of variation unexplained, 
and confirmation that the a priori shift is going in the expected direction needs 
further empirical verification.  
 
Temporal Trends in Adoption Clustering 
 
The above statistical relationship between X given Y or W given Y and time does 
show the change in adoption clustering activity along the X/W dimension, but it 
does not reveal anything about the change in locality along the X/W dimension.  In 
an effort to verify that the adoption clustering activity along the X/W dimension is 
shifting in the expected direction, temporal change in expected value or location in 
X and W are explored.  Specifically, the trend relationship of the expected organic 
adoption location on the X/W dimension per time period is calculated.  The time 
period covers the number of quarters since the inception of the National Organic 
Program (15 quarters prior to and including May 2006).  
 
Results of the linear models describing the correlations between the expected 
location of organic adoptions on the X/W dimension and time are provided in Table 
2.  Based on the statistical results, 69% of the variation between the expected 
location of organic adoptions on the X dimension is explained by time and 78% of 
the variation in relative the expected location of organic adoptions on the W 
dimension is explained by time. F statistics indicate statistically significant models.  
In addition, coefficients describing the change in the expected location of organic  
adoptions on the X given a change in time (-0.0407) and the change in the expected 
location of organic adoptions on the W given a change in time (-0.0321) are 
statistically different from zero at the 95% level and exhibit the correct a priori sign.  
These findings suggest that the relative average conditional entropy in X given Y 
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and the relative average conditional entropy in W given Y are shifting in the 
expected direction.  That is, away from non-NOP seal qualified organic adoptions 
and toward seal-qualified adoptions.  
 
Relative Conditional Entropy and the Cumulative Number of Organic Adopters  
 
The relative conditional entropy in X given Yn, R(X|Yn), denotes the variance or 
entropy in the organic level dimension in each food category I.  This metric reveals 
whether there is clustering occurring at a particular event variant (relatively low 
entropy) or if organic adoptions are occurring at many levels along the organic level 
dimension (relatively high entropy) at a particular food category.  A priori 
expectations are that the degree of relative conditional entropy within a particular 
food category is negatively related to the cumulative number of organic adopters 
within the particular food category.  This is because higher levels of innovation 
imitation are expected to occur in food categories with higher levels of innovation 
(organic) adoptions and relatively weak appropriability regimes.   
 
With respect to the organic case, as more organic adoptions occur within a 
particular food category, it is expected that later adopters will, in general, imitate 
early adopters and choose the same organic quality level.  So, some organic adopters 
will choose a higher level of organic quality while others will choose to adopt a 
relatively lower level of organic.  But over time, as more products within a 
particular food category enter the market, the occurrence of organic adoptions will 
converge onto the market’s most successful organic level variant.  Diminishing net 
benefits of adopting a particular level of organic quality per adopter is expected as 
the cumulative number of organic adoptions increases, due to an increase in the 
degree of competitive rivalry within a particular food category.  However, data 
availability does not permit empirical tests of this particular hypothesis.   
 
Conversely, it is possible to explore temporal trends between relative conditional 
entropy in X given Yn and the cumulative number of organic adoptions per food 
category Yn with the model as specified here: 
 
 (13) nnYXnYXn CUMAYXR *)|( || βα +=  
 
where CUMAn is the cumulative number of organic adoptions in food category n, 

YnX |β  < 0 and each time period is the number of quarters since the inception of the 
National Organic Program (15 quarters as of May 2006). 
Results of this temporal trend for relative conditional entropy in X given Yn and the 
cumulative number of organic adopters per food category is in Table 2.  The 
coefficient of determination (adj.R2) of the correlation is 0.42 and the parameter 
estimate is statistically significantly different from zero at the 95% level, has the 
correct a priori sign, and this evidence supports the a priori expectations. 
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Temporal Trends in Seal Qualified Adoption Rates 
 
It is expected that the variance in seal qualified adoption rates across food 
categories will increase over time.  Thus, the likelihood that a given product 
innovation will bear the organic seal becomes less dependent on the industry origin 
of the product and there is increased diversity of organic food product types on the 
store shelves.  To test this the relative conditional entropy in Y given Wk, when k = 
1, or that the product bears the NOP organic seal, is expected to be positively 
related to the time and this expected relationship is explored.  Also, it is expected 
that the variance in non-qualified adoptions across food categories will decrease 
over time because some product managers releasing product innovations to 
particular food categories will find that the obligations of seal-qualification are in 
excess of their firm’s abilities or effort level, due to food category or industry sector-
specific external constraints.  To test this hypothesis, the relative conditional 
entropy in Y given Wk, when k = 2, or that the product does not bear the NOP 
organic seal, is expected to be negatively related to time.  To compare adoption 
trends across food categories or industry sectors given a particular organic level, the 
analysis assumes that relative conditional entropies in Y given Wk (R(Y|Wk)) are a 
linear function of time where βYk is the change in relative conditional entropy in Y 
given Wk or: 
 
 (14) tWYR WYWY *)|(

1|1|1 βα +=  
where 

1|WYβ  > 0 and  
 
 (15) tWYR WYWY *)|(

2|2|2 βα +=  
 

where 
2|WYβ  < 0 and each time period is the number of quarters since the inception 

of the National Organic Program (15 quarters as of May 2006).  
 
As before, Table 2 contains the results of the linear models describing the 
correlations between each of explored relative conditional entropy in Y given Wk 
and time.  The coefficients of determination (adj.R2) for the correlations are 0.78 and 
0.79 for the relative conditional entropy in Y given W1 and the relative conditional 
entropy in Y given W2, respectively. Thus, more that three-quarters of the variation 
in relative conditional entropies in Y given Wk are explained by time alone.  The 
reported F statistics indicates a statistically significant relationships and this 
evidence supports the a priori expectations. 
 
Most results of this preliminary design of entropy metrics are encouraging.  The 
estimated parameter describing the change in relative conditional entropy in Y 
given W1 given a unit change in time has the expected positive sign and is 
statistically significant at a 95% level of confidence.  This evidence suggests an 
increase in the variety of organic food products on store shelves qualifying for the 
NOP organic seal.  In turn, the estimated parameter describing the change in 
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relative conditional entropy in Y given W1 , given a unit change in time, has the 
expected negative sign and is statistically significant at a 95% level of confidence.  
This further implies that some product managers releasing organic products into 
the market from particular food categories are finding that the obligations of seal-
qualification are in excess of their ability to comply due to food category or industry 
(sector-specific) external constraints. 
 
Conclusions and Managerial Implications 
 
An important aspect of food manufacturing first-mover strategy for firms is to 
understand the potential entrants that may develop after a firm becomes a pioneer. 
This analysis suggests that entropy is a useful metric for understanding the market 
dynamics when product innovation is a key aspect of the rivalry among firms within 
an industry.  Because differentiation strategies are common as a means for gaining 
a sustainable advantage over rivals, the issue of first-mover strategy is critical to 
managerial understanding of the implications for R&D budgets and the theoretical 
relationship between R&D budgets and such factors as the role of innovation 
propagators. 
 
In addition, supply chains are complex and food manufacturers’ within-chain 
relationships are influenced by strategic planning.  First-mover strategy may result 
in the development of different within-chain relationships.  Simultaneously, first-
mover strategy also may result in developing novel among-chain relationships as 
well.  For example, recent research by one of the authors of this manuscript focuses 
on agrifood supply chains relative to nutraceuticals and functional foods. The 
analysis suggests convergence of food manufacturing and pharmaceutical 
industries.  The supply chain relationships may evolve so that an innovative food 
manufacturer relies on a pharmaceutical company ingredient supplier for 
technological application knowledge (Bröring and Cloutier).  Such cross-chain 
relationships carry important implications for first-mover strategy.   
 
This research complements previous work on first-mover strategies and new 
product innovation which stresses the correct launch tactics, for example in 
Guiltinan.  As the evidence about organic NPD presented here suggests, choosing 
the right certification scheme as a means to reduce information costs for the 
consumer (establishing complementary assets) appears to be an important issue to 
consider during product launch within a first-mover strategy.  Clearly, there are 
several potentially important managerial implications from the research reported in 
this manuscript.     
 
Finally, the development of entropy metrics useful for analyzing complex and 
dynamic markets, such as the agrifood industry, is in its infancy.  However, there is 
empirical evidence reported here that at least encourages further development of 
the methods based on entropy metrics so that complex and interrelated levels and 
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categories of target markets can be better analyzed.  In addition, certain entropy 
metrics provide insight into whether weak appropriability regimes prevail in 
various food sectors. 
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Appendix A.  
 
Calculating Entropy  
 
Suppose that we observe event Xm out of M possible event variants. Each Xm occurs 

with a probability of Pm, where Pm > 0 and ∑  (where m = 1…M). Since Pm 

inversely influences the degree of surprise, h(Pm) presumes the following 
relationship:  

=

=
M

m
mP

1

1

 
 (16)  1

2log)( −= mm PPh
 
where h(Pm) exponentially decreases from infinity to zero as the probability of an 
event variant occurrence increases. The expected degree of surprise of a probability 
distribution, or entropy, is:  

 (17)  ∑
=

−=
M

m
mm PPXH

1

1
2log*)(
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where it is assumed that = 0 when Pm=0 because it can be shown that 
 (Theil). Minimum entropy occurs when one event has 100% 

chance of occurring which means that H(X) = 0.  This implies maximum 
concentration and minimal dispersion. Maximum entropy occurs when all n events 
have an equal chance of occurring and H(X) will equal  

1
2log* −

mm PP

0]log*[lim 1
20

=−

→ mmP
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m

 

 (18) MMMMMM
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=
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Maximum entropy (and maximum degree of surprise) increases at a decreasing rate 
as m increases.   
 
Total entropy can be disaggregated into among-set (category) and within-set 
(category) entropies. Suppose that each event variant Xm can be aggregated into 
mutually exclusive sets of related event variants Wk (i.e., a subset of Xm exclusively 

falls into Wk). The probability of Wk occurring is:  where Pk >∑
∈

=
km

mk PP  0 and that 

 (where k = 1…K).  ∑
=
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K

k
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The Entropy Decompositional Theorem states that total entropy H(X) is equal to 
total between-set entropy plus the average within-set entropy (Sporleder; Theil): 
Total entropy is:  
 

 (19)   ∑
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Total between-set entropy is:  
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and total within-set entropy is:  
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Using (3) the extent of total spatial dispersion of all product innovations can be 
derived; with (4) the extent of spatial dispersion product innovations among the 
product categories can be derived and with (5) the extent of spatial dispersion of 
product innovations within each product category can be derived.  
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Multidimensional entropy metrics can also be derived. Suppose that we observe two 
events, Xm and Yn, and there are M number of event X variants and N number of Y 
variants. The marginal entropies of each dimension within a total two-dimensional 
entropy measure are equal to the total entropy of each dimension: 

 (22) ,  ∑
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Total two-dimensional entropy is  
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We can also calculate conditional entropy metrics, which measures the amount of 
entropy in one dimension given the occurrence of a particular variant of some other 
dimension. The calculation of conditional entropy statistics is similar to the 
calculation of within-set entropy.  
 
Entropy in X given Ym:  
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Entropy in Y given Xn:  
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The average conditional entropies are:  
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Average conditional entropy is always less than or equal to unconditional marginal 
entropy or  and )()|( XHYXH ≤ )()|( YHXYH ≤ . )()|( XHYXH = and 

 if and only if X and Y are independent.  )()|( YHXYH =
 
Defining Multidimensional Entropy 
 
Multidimensional entropy equals the sum of marginal entropies minus expected 
mutual dependence and expected mutual dependence is equal to marginal entropy 
in a particular dimension minus the average conditional entropy in a particular 
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dimension given the occurrence variation in another event. Using these defined 
probabilities, distributions can be constructed and marginal, conditional and total 
two-dimensional entropy measures per time period calculated.  
 
Total two-dimensional entropy can also be disaggregated into between-set and 
within-set entropies in the same manner as one-dimensional disaggregation as 
defined in equations (3) through (5). Suppose we wanted to aggregate the 
occurrence of organic adoptions at each quality level up to the occurrence of whether 
they receive the permission to use the NOP seal and to aggregate food categories 
into their respective industry sectors. Total two-dimensional entropy can be 
disaggregated into two-dimensional between-set entropy and two-dimensional 
within-set entropy using the following equations, total 2D entropy:   
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and total within-set entropy:  

 (31) ∑∑
∑∑

∑∑
∈ ∈

= =

= ==
km ln

M

m

N

n
mn

kl

kl

M

m

N

n
mn

lk

P

P
P

P
ZWYXH

1 1

2
1 1 log),|,(  

 
 

© 2008 International Food and Agribusiness Management Association (IAMA). All rights reserved. 
 

163



Sporleder et al. / International Food and Agribusiness Management Review Volume 11, Issue 3, 2008 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 International Food and Agribusiness Management Association (IAMA). All rights reserved. 
 

164


	Volume 11, Issue 3, 2008
	Abstract
	The agrifood sector traditionally is regarded as a low-tech industry.  Food manufacturing is characterised by low intensity of research and development (R&D), compared to other manufacturing firms, which is reflected by relatively low R&D investment per dollar of sales (Grunert et al).  Compared to the pharmaceuticals sector or the information technology sector, food manufacturing industries consistently exhibit lower R&D spending (Morgan et al), yet there is enhanced interest in product innovations in this sector.  Currently, numerous applications of modern biotechnology focus on engineering input traits in the development of arable crops.  Designer genes in arable crops already are important on the business-to-business level.  However, agrifood firms increasingly are alert to the potential for differentiating bulk food products by adding useful functionalities relevant to specialized business-to-consumer markets (Bröring,  Cloutier, and Leker).  Hence, food product innovation through new product development is an important economic driver of the dynamics within agrifood chains.  R&D expenditures lead to innovation by food manufacturers and may be driven by a differentiation strategy.  A consequence of this is that intangible resources of the firm, such as intellectual property, are more likely to lead to a sustainable competitive advantage over rivals than tangible assets.  
	A successful differentiation strategy through R&D expenditures results in subsequent first-mover decisions.  That is, if a first-mover opportunity arises for the food manufacturer as a result of their R&D then it confers the right, but not an obligation, to develop a product (and/or perhaps even an entire market) within a future time period.  To obtain this right for management the firm paid a premium in the form of R&D expenditures committed during prior time periods.
	The objective of this research is to investigate food product innovation in the context of the first-mover strategy among food manufacturers within agrifood supply chains.  The emphasis of the analysis is on developing a useful metric for tracking new product development in the context of first-mover strategy.  Entropy is introduced as a novel and useful means of examining first-mover strategy and new product development (NPD) in general.  Understanding the complexities of the first-mover strategy and tracking NPD with entropy metrics holds promise for enhancing the analysis of agrifood supply chains and assisting firms in deciphering first-mover strategies of their rivals. 
	There is modest development of first-mover advantages compared to second-movers based on economic theory (Lieberman and Montgomery; Lieberman).  Some analysts have examined first-mover with regard to barriers to entry (Briggeman, et al).  There also is some development of diffusion and sustainable strategies with regard to food product innovation (Bröring; Shanahan, Sporleder, and Hooker).  Integrating these concepts with the first-mover theory, particularly with a focus on tracking new food product innovation using entropy metrics, is the unique contribution of this research.
	First-mover firms in a market are thought to have an initial advantage of high price while second-mover firms have the advantage of lower costs (Montgomery and Lieberman).  Pioneer firms face falling prices from firms that enter the market with imitations.  Pioneer firms make their first-mover advantage sustainable through developing superior resources and capabilities compared to second-movers (Briggeman, Gunderson, and Detre). 
	Pioneer firms are first-movers typically thought to gain advantages over rivals from being first.  These first-mover advantages may include strong image and reputation, brand loyalty, technological leadership, and being in an advantageous position relative to the ‘learning curve’ involved in managing a specific product or process innovation.  Lieberman and Montgomery argue that there are three primary advantages that may accrue to pioneer firms: the preemption of rivals, the imposition of switching costs on buyers, and the benefit that accrues from being seen by customers as a technological leader compared to rival firms.  Second-mover or follower firms have the advantage of lower costs through less expensive imitation of first-mover products or processes and the resolution of market or technological uncertainties faced by first-movers.  In the aggregate, market pioneers deploy innovative products or processes with high initial costs and risks, but yield high potential returns.  This also implies that second-movers or followers experience lower costs because imitation is less expensive than innovation.  
	Other potential advantages to second-movers include the ability of followers to free-ride on the first-mover’s pioneering costs (such as the expense of gaining regulatory approvals, informing potential buyers of the innovation’s advantages, and generally developing the infrastructure necessary to support commercializing the innovation).  Another factor may be the ability of followers to capitalize on first-mover mistakes and operate with less market or technological uncertainty when compared to the first-mover (Kerin, Varadarajan, and Peterson).
	Capture and sustainability of first-mover advantages are related to complementary assets (Teece, 1986).  Commercialization of innovation requires linking with complementary assets such as marketing expertise, brands, and logistics and supply chain networks, all in support of the innovation.  In general, a firm’s competitive advantage is a function of the unique organizational skills that determine how it combines and orchestrates assets over time (Teece, 1992).  The extent to which a new product innovation can be mastered by existing complementary assets depends on the degree of innovativeness.  Following Veryzer, product innovations can be distinguished along the dimensions “technological capabilities” and “market capabilities.”  Depending on the degree to which an innovation requires new capabilities, it may create conflicts within the existing firm. This view can be extended to include the capability requirements of an innovation on the customer side or even along the entire value chain (Bröring, Leker, and Rühmer).  The more disruptive an innovation is from a customer’s view, the more assets need to be changed; hence, the less likely is the adoption of that innovation.  This is because the customer may not want to build complementary assets to make adopting the innovation feasible (in case of B2B markets), or the customer may not want to invest in extra search and information costs (in case of B2C markets).  Sustainability may depend on the nature of the idiosyncratic investments induced by the innovation as well as the aggregate portfolio of tangible and intangible assets possessed by the first-mover firm (Teece, Pisano, and Shuen).  The factors influencing capture and sustainability of economic rents not only include complementary assets required to support commercialization but also the nature of the technology (the complexity of the technology) and the legal protections that may be available for insulating the technology from second-movers through patents, copyrights, or trademarks.           
	The strength of appropriability regimes also may be a factor in determining the sustainability of economic rents to innovators (López and Roberts).  Appropriability refers to the ability of various stakeholders to retain the economic rents generated from the commercialization of an innovation.  Weak appropriability regimes imply that stakeholders will have difficulty in capturing sustainable economic rents from their innovation.  Economic rents from commercializing an innovation are potentially shared among the innovator, customers buying the innovation, suppliers to the innovation, and second-movers or followers (Teece, 1986).  Commercializing innovation by firms that lack complementary assets, or in the event that only ‘generic’ general-purpose assets are required, leads to weak appropriability.  
	Food products are in the experience goods category.  Empirical evidence indicates that first-mover firms in experience goods tend to shape consumer tastes and preferences in favor of the pioneering brand (Robinson, et al).  Such preferences often are sustainable for the pioneering product.  First-mover strategy is a common dilemma for managers and has special importance when the product is in the experience goods category.  A priori, weak appropriability regimes are likely to characterize new product innovation by food manufacturers partly because they are manufacturing experience goods.  The exception to this generalization about weak appropriability regimes may be when food manufacturers already possess one or more category-dominant brands.  If the new product innovation is then introduced as a brand extension, strong appropriability may better characterize the situation.
	In the context of the product/market strategy matrix, Figure 1, the cells that represent first-mover situations include all but the existing product-existing market cell.  That is, first-mover strategy may be deployed by firms either through introducing new products or developing new markets.  For example, a food manufacturer that develops a new organic product after developing a conventional product in the same category would be characterized within the product proliferation cell of the matrix.  The new product into new markets cell is the most uncertain and potentially the highest relative product launch cost among the four cells.


